Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Biomechanical Performance of a New Head and Neck Support

1990-10-01
902312
The heads of auto racing drivers and military pilots are usually not supported so that neck fatigue and injury can be a serious problem. A new Head And Neck Support (HANS) is being developed to reduce head motions and neck loads. The biomechanical performance of HANS has been evaluated by crash victim modeling with CAL 3-D and by impact sled testing with a Hybrid III dummy. Modeling and testing were conducted at 30 and 35 mph BEV and with acceleration directions from the front, right front, and right lateral. The model and test results show that head motions, neck loading, and the potential for neck injury are all significantly reduced with HANS compared to without HANS.
Technical Paper

Definition and Development of A Crash Dummy Head

1974-02-01
741193
Crash test dummies serve as human surrogates in automotive crash simulations, and accelerations monitored in the heads of these dummies are used for assessment of human head injury hazard. For these acceleration measurements to be meaningful indicators of head injury, the impact response of the human head must be a part of dummy head design. This paper describes the conception, design, and development of a crash test dummy head. Geometric, inertial, and performance requirements based on biomechanical information are presented and discussed. The head design concept is compatible with current head injury assessment procedures, and the configuration is based on the GM Research skull and head geometry models. The manufacture and development are described, and the test procedures and results are presented and discussed with reference to the biomechanical and functional requirements. The resulting dummy head is shown to comply with these requirements.
Technical Paper

The Highway Safety Research Institute Dummy Compared with General Motors Biofidelity Recommendations and the Hybrid II Dummy

1974-02-01
740588
Two Highway Safety Research Institute (HSRI) dummies were tested and evaluated. Based on the analysis given, the HSI dummy should not be used for vehicle qualification testing. However, many of its components offer viable alternatives for future dummy development. The dummy was found to have inadequate biomechanical fidelity in the head, neck, and chest, although its characteristics were very promising and, as a whole, biomechanically superior to the Hybrid II. Its repeatability and reproducibility in dynamic component tests were better than the Hybrid II dummy. In particular, the HSRI friction joints were outstanding in repeatability and had a significant advantage in usability in that they do not require resetting between tests. In three-point harness and ACRS systems tests, the values of injury criteria produced by the HSRI dummy were generally lower than those obtained with the Hybrid II, especially the femur loads in the ACRS tests.
Technical Paper

Old Problems and New Approaches in Seating Biomechanics

1986-02-24
860049
Human accommodation, has undergone rapid changes in the past few years which are outdistancing current concepts, data and design tools. This paper examines the basis of current problems in the application of these tools to the design of safe and comfortable seats. Examples of the types of new data needed are given and the discussion proposes new paths to solve current problems.
Technical Paper

Biomechanical Design and Evaluation of Truck Seats

2000-12-04
2000-01-3406
The design and evaluation of seating has been limited by the available technologies to measure the mechanical interaction between a seat and its user. For many years, representation of the seated torso has been by two standardized measurement manikins from the American National Standards Institute (ANSI)1 for office seating and the Society of Automotive Engineers (SAE)2 for vehicle seating. Most office and automotive seat backs recline about a single point; this motion can be measured with the available manikins. However, both the ANSI and the SAE manikins do not represent the natural anatomical movements of the upper torso (thorax) relative to the lower torso (pelvis) that occur with spinal articulation. Current tools that are useful for seat design and evaluation include the biomechanical models3,4 and experimental test methods5, 6,7 that have been developed at Michigan State University's (MSU) Biomechanical Design Research Laboratory (BDRL).
X