Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Multidimensional Simulation of the Influence of Fuel Mixture Composition and Injection Timing in Gasoline-Diesel Dual-Fuel Applications

2008-04-14
2008-01-0031
Homogeneous charge compression ignition (HCCI) combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, there are several difficulties that must be overcome for HCCI practical use, such as difficult ignition timing controllability. Indeed, too early or too late ignition can occur with obvious drawbacks. In addition, the increase in cyclic variation caused by the ignition timing uncertainty can lead to uneven engine operation. As a way to solve the combustion phasing control problem, dual-fuel combustion has been proposed. It consists of a diesel pilot injection used to ignite a pre-mixture of gasoline (or other high octane fuel) and air. Although dual-fuel combustion is an attractive way to achieve controllable HCCI operation, few studies are available to help the understanding of its in-cylinder combustion behavior.
Technical Paper

Two-Step Low-Pressure Direct Injection System for Hydrogen Fuelled Engines

2010-10-25
2010-01-2156
The paper describes the CFD analysis, the arrangement and the first experimental results of a single-cylinder engine that employs an innovative low-pressure hydrogen direct-injection system, characterized by low fuel rail pressure (12 bar) and consequent low residual storage pressure. The injection is split in two steps: at first hydrogen is metered and admitted into a small intermediate chamber by an electroinjector (a conventional one usually employed for CNG), next a mechanically actuated poppet valve, that allows high volumetric flow rates, times hydrogen injection from the intermediate chamber to the cylinder within a short time, despite the high hydrogen volume due to the low injection pressure. Injection must be properly timed to maintain pressure below 6 bar (or little more) in the intermediate chamber and thus keep sonic flow through the electroinjector, to maximize volumetric efficiency and to avoid backfire in the intake pipe.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
X