Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Verification & Validation: Process and Levels Leading to Qualitative or Quantitative Validation Statements

2004-03-08
2004-01-1752
The concepts of Verification and Validation (V&V) can be oversimplified in a succinct manner by saying that “verification is doing things right” and “validation is doing the right thing”. In the world of the Finite Element Method (FEM) and computational analysis, it is sometimes said “verification means solving the equations right” and “validation means solving the right equations”. In other words, if one intends to give an answer to the equation “2+2=”, then one must run the resulting code to assure that the answer “4” results. However, if the nature of the physics or engineering problem being addressed with this code is multiplicative rather than additive, then even though Verification may succeed (2+2=4 etc), Validation will fail because the equations coded are not those needed to address the real world (multiplicative) problem.
Technical Paper

Energy Absorption in Aluminum Extrusions for a Spaceframe Chassis

1995-04-01
951079
This work describes the design, finite-element analysis, and verifications performed by LLNL and Kaiser Aluminum for the prototype design of the CALSTART Running Chassis purpose-built electric vehicle. Component level studies, along with our previous experimental and finite-element works, provided the confidence to study the crashworthiness of a complete aluminum spaceframe. Effects of rail geometry, size, and thickness were studied in order to achieve a controlled crush of the front end structure. These included the performance of the spaceframe itself, and the additive effects of the powertrain cradle and powertrain (motor/controller in this case) as well as suspension. Various design iterations for frontal impact at moderate and high speed are explored.
Technical Paper

Use of Non-Quadratic Yield Surfaces in Design of Optimal Deep-Draw Blank Geometry

1996-02-01
960597
Planar anisotropy in the deep-drawing of sheet can lead to the formation of ears in cylindrical cups and to undesirable metal flow in the blankholder in the general case. For design analysis purposes in non-linear finite-element codes, this anisotropy is characterized by the use of an appropriate yield surface which is then implemented into codes such as DYNA3D. The quadratic Hill yield surface offers a relatively straightforward implementation and can be formulated to be invariant to the coordinate system. Non-quadratic yield surfaces can provide more realistic strength or strain increment ratios, but they may not provide invariance and thus demand certain approximations. Forms due to Hosford and Barlat et al. have been shown to more accurately address the earing phenomenon. In this work, use is made of these non-quadratic yield surfaces in order to determine the optimal blank shape for cups and other shapes using ferrous and other metal blank materials with planar anisotropy.
X