Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Influence of Pre Turbo Catalyst Design on Diesel Engine Performance, Emissions and Fuel Economy

2008-04-14
2008-01-0071
This paper gives a thorough review of the HC/CO emissions challenge and discusses the effects of different diesel oxidation catalyst designs in a pre turbine and post turbine position on steady state and transient turbo charger performance as well as on HC and CO tailpipe emissions, fuel economy and performance of modern Diesel engines. Results from engine dynamometer testing are presented. Both classical diffusive and advanced premixed Diesel combustion modes are investigated to understand the various effects of possible future engine calibration strategies.
Technical Paper

Pre-Turbocharger-Catalyst - Catalytic Performances on an Euro V Type Diesel Engine and Robust Design Development

2008-04-14
2008-01-0768
Future emission legislation and new diesel engine technology tighten the requirements for modern diesel vehicle exhaust after-treatment systems. In particular, the oxidation catalyst system requires more efficiency to treat increasing raw emissions of HC and CO at low exhaust gas temperatures resulting from advanced combustion processes. This represents a big challenge for all developers today where the cost of raw materials continues to rise. Splitting the oxidation catalyst volume into two parts and mounting a very small part in front of a turbocharger on Euro III or Euro IV Diesel engines has been proved very efficient: Light off and maximum pollutant conversion rates were improved. New results gained with Pre Turbocharger Catalyst (PTC) on a Euro V type diesel engine are confirming previous observations. The complete after-treatment system of today's vehicles should be designed and developed for the whole life of the vehicle.
Technical Paper

New Approaches to Catalyst Substrate Application for Diesel Engines

2001-03-05
2001-01-0189
Nearly all real Diesel engine operation is leading to low exhaust temperatures. Standard catalyst technique remains therefore for significant time below light off. To improve the conversion behavior two approaches were made: placement of tailor fitted catalysts as close as possible to the engine exhaust port before turbocharger and usage of close coupled catalysts with the so-called hybrid design. Both measures are providing visible progress in reducing Diesel engine emissions. Tests were made with modern Diesel engines both for passenger cars and heavy duty vehicles.
Technical Paper

Application of metal-supported catalysts for diesel engines

2001-09-23
2001-24-0059
Nearly all real diesel engines operations are leading to low exhaust temperatures. Standard catalyst technique remains therefore for significant time below light-off. To improve the conversion behavior two approaches were made: placement of tailor-fitted catalysts as close as possible to the engine exhaust port before turbocharger and usage of close coupled catalysts with the so-called hybrid design. Both measures are providing visible progress in reducing diesel engine emissions. Tests were made with modern diesel engines both for passenger cars and heavy-duty vehicles.
Technical Paper

Pre-Turbocharger Catalyst - Fast catalyst light-off evaluation

2005-05-11
2005-01-2142
Further tightened emission legislation and new engine technologies increase the requirements for the exhaust after-treatment system of modern diesel passenger cars. Especially the increasing raw emissions of HC and CO as well as the low temperature of the exhaust gas for a long period during cold start of the New European Driving Cycle (NEDC) require additional efforts in the design of the oxidation catalyst system [1]. A highly efficient micro catalyst, which is mounted in front of a turbocharger, can help to treat efficiently these high HC and CO emissions. Due to the higher temperature level in front of the turbine and the significantly increased mass and heat transfer by turbulent flow, efficiency especially during cold start is highly increased. However the packaging constraints are more critical in this area due to heat considerations and also to maintain engine performance.
Technical Paper

Metal Supported Particulate Matter-Cat, A Low Impact and Cost Effective Solution for a 1.3 Euro IV Diesel Engine

2005-04-11
2005-01-0471
Modern Diesel Engines equipped with Common-Rail Direct Injection, EGR and optimized combustion technology have been proven to reduce dramatically engine raw emissions both in terms of Nox and Particulate Matter. As a matter of fact the recently introduced FIAT 1.3 JTD 4 Cylinder Engine achieves Euro 4 limits with aid of conventional 2-way oxidation catalyst. Nevertheless some special applications, such as platforms with relatively higher gross vehicle weight possibly yield to PM-related issues. The present paper deals with the development program carried out to design a cost effective aftertreatment solution in order to address particulate matter tailpipe emissions. The major constraint of this development program was the extremely challenging packaging conditions and the absolute demand to avoid any major impact on the system design. The flow-through metal supported PM Filter Catalyst has been extensively tested on the specific vehicle application with aid of roller bench setup.
X