Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The VTS Single-Vehicle Trajectory Simulation

1985-02-25
850252
A vehicle trajectory simulation called VTS has been developed as an aid for reconstruction of automobile accidents. The two dimensional vehicle has longitudinal, lateral and yaw degrees of freedom, a point mass at the center of gravity) yaw inertia about the center of gravity and four contact points (“tires”) which can be arbitrarily positioned. No collision or aerodynamic forces are modeled. The traction surface is represented as a flat plane with a specified nominal friction coefficient. Several quadrilateral “patches” may be applied to the surface to change the friction coefficient in specific regions. User vehicle control consists of timewise tables for steering angle and traction coefficient for each of the four wheels. When used individually or in conjunction with other computer modules, VTS provides a convenient, accurate modular tool for trajectory simulation.
Technical Paper

Impact Testing of Passenger Vehicle and Semi-Truck Pneumatic Tires and Rims

2023-04-11
2023-01-0625
Wheels and tires on vehicles, are often directly (or indirectly) involved in collisions with other vehicles or fixed objects. In this study, the effects of the pneumatic tire and rim, as it contributes to a dynamic collision, was isolated and studied. A total of 15 mounted tires of various common sizes were selected to conduct 35 dynamic impact tests into the flat face of an instrumented concrete barrier. The tires and rims used in the tests ranged from heavy truck, light truck, down to common passenger vehicle tires. Each of the 15 tires and rims were impact tested individually to failure in order to explore the dynamic response and performance of pneumatic tires in collisions. Of the 35 tests, 28 were conducted with a single tire and rim configuration and 7 tests were conducted simulating a dual truck tire configuration. It was determined that the coefficient of restitution for 22 of the tire impacts into the rigid flat faced barrier were remarkably similar, around 0.9 ± 0.1.
Journal Article

Rollover Testing on an Actual Highway

2009-04-20
2009-01-1544
Three full-size sedans were towed to highway speeds along a section of a remote rural highway. Upon release, an automated steering controller steered the vehicles through a series of maneuvers intended to result in rollover. Repeated attempts to roll each vehicle were made until rollover resulted. Non-rollover attempts produced cornering tire marks by the out-of-control vehicle. Out of numerous runs, 3 rollover and 2 non-rollover tests were selected for documentation and analysis. One additional steer-induced rollover test is presented that was conducted along a simulated road section at a closed test-track facility. All six tests presented are instrumented real-world type tests that were later reconstructed based upon the data obtained from on-board instrumentation, videotape, survey measurements, and still photographs obtained of each respective test.
X