Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Evaluation of Common Rail, Hydraulically Intensified Diesel Fuel Injection System Concepts and Rate Shapes

1998-08-11
981930
Hydraulically intensified medium pressure common rail (MPCR) electronic fuel injection systems are an attractive concept for heavy-duty diesel engine applications. They offer excellent packaging flexibility and thorough engine management system integration. Two different concepts were evaluated in this study. They are different in how the pressure generation and injection events are related. One used a direct principle, where the high-pressure generation and injection events occur simultaneously producing a near square injection rate profile. Another concept was based on an indirect principle, where potential energy (pressure) is first stored inside a hydraulic accumulator, and then released during injection, as a subsequent event. A falling rate shape is typically produced in this case. A unit pump, where the hydraulic intensifier is separated from the injector by a high-pressure line, and a unit injector design are considered for both concepts.
Technical Paper

A CFD Study of a 4-Valved, Fuel Injected Two-Stroke Spark Ignition Engine

1993-03-01
930070
The CFD code KIVA is used in conjunction with a one-dimensional wave action program to simulate exhaust blowdown, in a study of the scavenging and combustion at different loads and constant engine speed, in a single cylinder 4 valved 2-stroke engine configuration, using in-cylinder fuel injection. Two combustion chamber geometries -- a stepped head and a pentroof, were used in this study. The stepped head geometry has a combustion chamber recessed in the cylinder head, and contains the intake valves. The vertical intake port configuration provides a well developed reversed loop flow in the engine cylinder. The pentroof combustion chamber is similar to those used in current 4 stroke engines(1)*. The computational study focuses on the effects of injector orientation, and the subsequent interaction between the fuel spray and ‘loop swirl’ of air in the engine cylinder, and on the resulting combustion characteristics and exhaust emissions.
Technical Paper

A Study of Air-Assisted Fuel Injection into a Cylinder

1994-10-01
941876
The CFD code KIVA has been applied to the simulation of the transient air-assisted fuel injection(AAFI) process, in which air and fuel at moderate pressures are mixed in an interior chamber of the injector before passing through a pintle valve into air at near ambient pressure in a cylinder. On passage through the pintle valve fuel is atomised. Because of the small dimensions of the flow passages within the injector, a very fine computational grid structure is used to accurately resolve the flow behaviour. Adopting an axisymmetric grid structure enables symmetry to be exploited. The computational results are validated with experimental data for fuel jet penetration and spread with time, obtained using Schlieren visualisation. The simulation of air blast atomisation in an engine cannot utilise the fine grid structure above because of the large computational resources required.
Technical Paper

Application of CFD to the Matching of In-Cylinder Fuel Injection and Air Motion in a Four Stroke Gasoline Engine

1997-05-01
971601
The in cylinder air motion, fuel air mixing, evaporation, combustion and exhaust emissions have been simulated for a four stroke direct injection gasoline engine using the KIVA II code. A strong controlled tumbling air motion was created in the cylinder, through a combination of a conventional pentroof four valve cylinder head, in conjunction with a piston having a stepped crown and offset combustion bowl. A range of injection strategies were employed to optimise combustion rate and exhaust emission (NOx and unburned hydrocarbons (fuel)), at two operating conditions - one with a stoichiometric air fuel mixture and the other with a lean mixture of 30:1 air/fuel ratio. Injection directed towards the piston bowl with a hollow cone jet, in a single pulse, has shown the best results regarding burned mass fraction and level of unburned HC. Fuel concentration, air motion, combustion characteristics and pollutants level are presented for lean and stoichiometric cases.
X