Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modelling the Origins of Combustion Noise in the Indirect Injection Diesel Engine

1995-10-01
952432
The Computational Fluid Dynamics (CFD) Code KIVA II has been applied to model combustion pressure oscillations in the Indirect Injection Diesel Engine. These oscillations are attenuated and transmitted by the engine structure to the surroundings as noise. The computational model was used to evaluate changes in design and operating characteristics of an engine, and the effect of these on the intensity of gas pressure oscillation. The results in general corroborate the trends of published experimental measurements of combustion noise. A 40% increase in grid resolution showed minor changes in the magnitude of cylinder pressure oscillation and approximately 0.5ø crank angle phase advance in the oscillation cycle compared with the grid used for the results presented here.
Technical Paper

The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D.I. Diesel Engine

1999-03-01
1999-01-0840
An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE) was used to study diesel combustion. The SCOTE retains the port, combustion chamber, and injection geometry of the production six cylinder, 373 kW (500 hp) 3406E heavy-duty truck engine. The engine was equipped with an electronic unit injector and an electronically controlled common rail injector that is capable of multiple injections. An emissions investigation was carried out using a six-mode cycle simulation of the EPA Federal Transient Test Procedure. The results show that the SCOTE meets current EPA mandated emissions levels, despite the higher internal friction imposed by the single-cylinder configuration. NOx versus particulate trade-off curves were generated over a range of injection timings for each mode and results of heat release calculations were examined, giving insight into combustion phenomena in current “state of the art” heavy-duty diesel engines.
X