Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation and Analysis of Effect of Oxygenate Blended Diesel on Combustion and Performance in Turbocharged Diesel Engine

2007-07-23
2007-01-2019
In this paper an effort has been made to simulate the combustion and performance of a turbocharged diesel engine fuelled with oxygenate blended diesel. In this simulation a comprehensive analysis of combustion, heat release, heat transfer and performance of a turbocharged diesel engine was carried out with Diethylene glycol dimethyl ether (Diglyme) blended diesel. The CI engine cycle was simulated for both neat diesel and oxygenate blended diesel fuel operations with a closer duration of each degree crank angle. Heat release was calculated using WIEBE's heat release model under the consideration of two-zone combustion. The thermodynamic property at each degree crank angle was calculated based on the first law of thermodynamics. The fluid motion is considered with swirl inside the engine cylinder. The gas-wall heat transfer calculations are based on ANNAND's heat transfer model for IC engines.
Technical Paper

Simulation of Performance of Direct Injection Diesel Engine Fuelled with Oxygenate Blended Diesel

2007-01-23
2007-01-0070
Blending an oxygenate with diesel fuel modifies chemical and physical properties that can alter the engine operating parameters, combustion and emission levels. In this paper an effort has been made to simulate the performance of a direct injection diesel engine fuelled with oxygenate blended diesel. In this simulation the CI engine cycle was simulated for both diesel and oxygenate blended diesel fuel with a closer duration of each crank angle degree. The thermodynamic property at each crank angle is calculated based on the first law of thermodynamics. The fluid motion inside the engine cylinder is considered for simulation. Heat release was calculated using WIEBE's heat release model considering two-zone combustion. The gas-wall convection heat transfer is calculated using ANNAND's heat transfer model considering combustion chamber temperature swings. In the gas exchange model, gas flow rates during intake and exhaust systems were calculated.
X