Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Investigations on Reduction of Power Consumption of Oil Pump for New Advanced Multijet Diesel Engine

2009-04-20
2009-01-1463
Automobile OEM's around the world are looking to improve their overall vehicle and engine efficiency in terms of fuel economy and power output. Efficiency improvement is possible by cutting down the engine parasitic loads. Lubrication oil pump is one such source for parasitic loss of multijet diesel engine. One best way of reducing the same is by optimizing the power consumed by the oil pump without appreciably affecting the flow requirements of the engine. This paper describes an effective approach to bring down the power consumption of a fixed displacement oil pump by keying out various factors contributing for the same. Detailed here are the methods used for identifying those factors, modifications carried out in the design, and testing methods employed for the estimation, together with the results achieved. The test results show that it is possible to improve the power consumption of oil pump by 18% as a result of this study.
Technical Paper

Performance Simulation of Direct-Injection Diesel Engine Operated with Neat Di-Methyl Ether

2008-10-06
2008-01-2425
In modern research, computer simulation has become a powerful tool for IC engine performance prediction as it saves time and is also economical. A proposed theory or an innovation can be analyzed quickly using a computer and the setting up cost for an experimental work can be postponed until optimization is achieved. For the purpose of evaluating performance of direct injection diesel engine operated with neat oxygenated fuel, the literature data were found confined to experimental investigations and insufficient to serve the purpose because of the large number of oxygenated fuels available for testing. Any improvement predicted in the combustion of the engine fuel will enhance the performance and reduce the emission simultaneously. Therefore oxygenated fuel combustion predictive capability is a acquit necessity at this point of time to screen the oxygenated fuels for better performance.
Technical Paper

Numerical & Experimental Investigation of Flow through Pressure Relief Passage of Gerotor Oil Pump of a Passenger Car Diesel Engine

2011-04-12
2011-01-0414
The main challenge in designing the oil pump for gasoline & diesel engines is to optimize the pressure relief passage. Pressure relief passage is critical from design point of view as it maintains the oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfactory performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area will also reduce the power consumed by the pump. The Pressure relief system for this study consists of Pressure relief valve, spring, retainer, pressure relief passages. It is difficult to directly measure the flow through the pressure relief passage and is arrived based on the drop in flow at the delivery port. Numerical tool will be handy to predict the flow through the pressure relief passage and this can be used to optimize the flow through the bypass passage.
Technical Paper

Direct Injection Diesel Engine Rate of Heat Release Prediction using Universal Load Correction Factor in Double Wiebe Function for Performance Simulation

2012-04-01
2011-01-2456
A proposed modification or an innovation can be analyzed quickly using a computer simulation and cost overrun in setting up an experimental work can be minimized by the optimization of experimental parameters beforehand. Literature data for performance prediction of direct injection diesel engine operated either with diesel fuels having property variation or with oxygenated diesel blends were found mostly confined to experimental investigations only. In modern research, computer simulation has become a powerful tool for diesel engine performance prediction as it saves time and is also economical in the analysis of modifications. In a finely tuned and warm engine, the thermodynamic models are capable of reproducing cylinder pressure and over all engine performance with acceptable accuracy over a wide range of operating conditions.
Technical Paper

Performance Improvement of Automotive Oil Pump to Operate at High Temperatures Employed in Modern Diesel Engines

2012-04-16
2012-01-0428
The main challenge in today's modern diesel engines is to design the parts, which should withstand higher temperatures. To achieve this, selection of materials and tolerances are very important. The product identified for this study is an oil pump, which is an engine auxiliary component. The function of oil pump is to supply oil to different parts of the engine to lubricate and reduce the overall engine friction. The different speed and load condition for which the engine is subjected pose a challenge to the oil pump, to supply necessary quantity of oil at required pressures. Normally, the oil pump is subjected to a temperature of 120°C at higher speeds. However, the peak oil temperature in modern diesel engines can be as high as 140°C. When the existing pump was tested at full speed and suddenly decelerated to idle speed, it was observed that the minimum oil pressure was not maintained for engine lubrication.
Technical Paper

Oil Pump Performance Optimization for Three Cylinder Diesel Engine through Friction Reduction

2014-10-13
2014-01-2881
Fuel Economy & CO2 Reduction in IC Engines is the key driving factor for the Product performance & Customer satisfaction all around the world. The Stringent CO2 Limits calls for Engine Friction Reduction, Engine Downsizing & other Alternative measures. The challenges were to measure the component level Friction Contribution on the Engine & to select the critical contribution parameter & to optimize the same. Oil pump is one such important engine parasitic load which takes up engine power through crankshaft to deliver oil flow rate according to engine demand. The proper functioning of the Oil pump is considered with required engine Oil pressure along with optimum power consumption over various operating speed and temperature. Hence the various Oil pump critical design metrics are reviewed for two cylinder Multi-jet diesel engine to have optimal power consumption and without reduction the Oil pressure at the engine oil gallery.
Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
X