Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Two-Phase Alternator with DC and AC Stator Excitation

2008-04-14
2008-01-1448
A two-phase alternator consists of two one-phase generators. The phase of the two output voltages of the alternator is shifted 90 degrees. The alternator rotor has a salient pole configuration without coils. Two generators are mounted in the stator slots inside the alternator stator. Each of the generators consists of one winding for excitation and one output winding for voltage generation. For generator excitation, DC or AC current may be used. For AC excitation, the direction of current flow is changed as a function of the rotor position. If three one phase generators are used with a 120 degree output voltage phase shift, then a three-phase alternator can be built. The two-phase alternator has simpler construction and less parts than a three-phase alternator and is consequently easier to fabricate and maintain. This paper presents experimental and the field circuit calculation results of two-phase alternators with DC and AC stator excitation.
Technical Paper

Increased Maneuverability of Electric Vehicles on the Bases of a Block-Modular Design

2006-04-03
2006-01-0144
The operation of electric vehicles in urban conditions, especially in limited spaces, frequently imposes increased requirements on maneuverability. For electric vehicles operating on roads up to 30-40 km/hour, one of the most practical methods of increasing maneuverability is the use of completely independent drawing mono-blocks. These blocks are self-contained units each consisting of a draw wheel, electric motor, power supply, storage battery, and an electronic power converter. The blocks allow the vehicle to rotate 360 degrees around center axis, turn at any radius, and move in any direction, including straight to the left and to the right. The authors have developed and patented an increased maneuverability electro-cycle vehicle which consists of two mechanically connected block modules. In addition to increased maneuverability, such a design also increases reliability-failure of one block module does not prevent vehicle operation.
X