Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Limits of Application of Human Body Dynamics in Assessing Vibration Comfort of Seats

2003-03-03
2003-01-0953
It has been widely reported that the overall vibration comfort performance of static and dynamics seats is strongly influenced by the biodynamic behaviour of the seated human body. The contributions of the seated occupant to the overall vibration attenuation of the coupled seat-occupant system are experimentally investigated as functions of the nature of excitation, static and dynamic properties of the seat, and the sitting posture. The study involved two different seats with natural frequencies in the vicinity of 1.5 Hz and 4 Hz, which would characterize the low natural frequency suspension as well as high natural frequency seats employed in automobiles and some industrial vehicles. The vibration isolation properties of the seats are evaluated with a rigid mass and two human subjects under different vibration excitations, including swept sine, broad-band random and standardized vibration spectra of selected vehicles.
Technical Paper

Reduction of Dynamic Pavement Loads of Heavy Vehicles Through Optimal Suspension Damping and Axle Vibration Absorber

1996-10-01
962148
In this study, the enhancement of road friendliness of Heavy Goods Vehicle is investigated using two methods to control the resonant forces: (i) Determination of optimal asymmetric force velocity characteristics of the suspension dampers to control the wheel forces corresponding to the resonant modes; (ii) Optimal design of an axle vibration absorber to control the wheel forces corresponding to the unsprung mass resonance mode. An analogy between the dynamic wheel loads and ride quality performance characteristics of heavy vehicles is established through analysis of an in-plane vehicle model. A weighted optimization function comprising the dynamic load coefficient (DLC) and the overall rms vertical acceleration at the driver's location is formulated to determine the design parameters of the damper and absorber for a range of vehicle speeds. The results show that implementation of tuned axle absorbers can lead to reduction in the DLC ranging from 11.5 to 21%.
Technical Paper

Ride Dynamic Model of a Tilt Cab for Off-Road Vehicles

1989-05-01
891140
A six degrees-of-freedom ride dynamic model of a cab-over-engine supported on elastomer mounts is developed using lumped parameters. The lumped parameter model is analyzed for its free vibration response, while assuming the cab structure to be rigid. A finite element model of the suspended cab is developed and analyzed to establish the influence of flexibility of the cab structure on the ride dynamics of the tilt cab. The vibration modes of analytical lumped parameter and finite element models are compared to the dominant ride frequencies of the vehicle measured in the field. The lumped parameter model is then modified to achieve a comprehensive ride dynamic model for its further use in ride performance analyses.
Technical Paper

Ride Vibrations of Articulated Vehicles and Significance of Secondary Suspension Systems

1989-05-01
891141
Ride quality of articulated vehicles is investigated via computer simulation in view of secondary suspension parameters. A tractor-semitrailer vehicle is modelled incorporating primary as well as secondary suspension. The ride vibration levels at the cab floor and at the driver-seat interface are evaluated using power spectral density approach. The effect of various vehicle parameters, such as secondary suspensions, primary suspensions, axle loads and tires on the vehicle ride quality is presented, and the significance of secondary vehicle suspension is specifically emphasized. A software package is developed to evaluate and assess the ride performance of articulated vehicles with suspended seat and cab. A limited validation of the computer ride model is achieved via field measurements.
Technical Paper

Study of Occupant-Seat Models for Vibration Comfort Analysis of Automotive Seats

2000-10-03
2000-01-2688
The comfort assessments of automotive seats are attempted through development of seat-occupant models in order to minimize the participation of human subjects in such studies. A nonlinear model of a polyurethane foam (PUF) cushion and its support mechanism is developed through measurement of static and dynamic properties as functions of the seated load, and excitation frequencies and amplitudes. Nonlinear analytical models of the seat-occupant system are developed by integrating three different occupant models of different complexities with the cushion model. The analytical response characteristics of these models are derived under sinusoidal and random excitations considered representative of the automotive vibration environment. The vibration transmission properties of the seat are measured in the laboratory under harmonic and random excitations using 6 human subjects.
Technical Paper

Optimal Suspension Damping for Improved Driver- and Road- Friendliness of Urban Buses

1999-11-15
1999-01-3728
Dynamic interactions of urban buses with urban roads are investigated in view of the vibration environment for the driver and dynamic tire forces transmitted to the roads. The static and dynamic properties of suspension component and tires are characterized in the laboratory over a wide range of operating conditions. The measured data is used to derive nonlinear models of the suspension component, and a tire model as a function of the normal load and inflation pressure. The component models are integrated to study the vertical and roll dynamics of front and rear axles of the conventional and modern low floor designs of urban buses. The resulting nonlinear vehicle models are thoroughly validated using the fieldmeasured data on the ride vibration and tire force response of the buses.
Technical Paper

Experimental Evaluation of Friction Coefficients of Typical Loads and Trailer Decks Under Vertical Vibration

2000-12-04
2000-01-3510
This paper summarizes the methodology and findings of an investigation to determine friction coefficients between typical loads and trailer deck materials in static, sinusoidal, and field measured random vibration environments. To conduct the tests in a controlled laboratory environment, a special sled-deck fixture was designed. Provisions were made to allow a change in sled-deck contact materials and to vary the load on the sled. For dynamic testing, the deck was subjected to sinusoidal and field based random signals obtained from tractor-trailer traversing paved and gravel roads. The results reveal that under vertical vibration, these friction coefficients can be as low as 25% of their corresponding static values. The random vibration tests revealed that friction coefficients can fall below 75% of the mean value for up to 35% of the total test duration. Thus, loads that rely on static friction for security may be highly prone to load shifts in a dynamic environment.
X