Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Directional Response of Partially Filled Tank vehicles

1989-11-01
892481
The directional dynamics of partially filled articulated tank vehicles is investigated via computer simulation assuming constant forward velocity. The directional response characteristics of an articulated tank vehicle is investigated for various steering manoeuvres and compared to that of an equivalent rigid cargo vehicle to demonstrate the destabilizing effects of liquid load shift. It is concluded that during a steady steer input, the distribution of cornering forces caused by the liquid load shift yields considerable deviation of the path followed by the tank vehicle. The lateral load shift encountered in a partially filled tank vehicle during lane change and evasive type of highway manoeuvres gives rise to roll and lateral instabilities.
Technical Paper

Ride Vibrations of Articulated Vehicles and Significance of Secondary Suspension Systems

1989-05-01
891141
Ride quality of articulated vehicles is investigated via computer simulation in view of secondary suspension parameters. A tractor-semitrailer vehicle is modelled incorporating primary as well as secondary suspension. The ride vibration levels at the cab floor and at the driver-seat interface are evaluated using power spectral density approach. The effect of various vehicle parameters, such as secondary suspensions, primary suspensions, axle loads and tires on the vehicle ride quality is presented, and the significance of secondary vehicle suspension is specifically emphasized. A software package is developed to evaluate and assess the ride performance of articulated vehicles with suspended seat and cab. A limited validation of the computer ride model is achieved via field measurements.
Technical Paper

Directional Dynamics of a Partly-Filled Tank Vehicle Under Braking and Steering

2000-12-04
2000-01-3477
Dynamic behavior of a partly-filled liquid cargo vehicle subject to simultaneous application of cornering and braking maneuvers is investigated through computer simulation. A three-dimensional quasi-dynamic model of a partly-filled tank of circular cross-section is developed and integrated into a comprehensive three-dimensional model of an articulated vehicle to study its directional response under varying steering and braking inputs, fill volumes and road surface friction. The liquid load movement encountered under combined steering and braking is expressed in terms of variations in the instantaneous c.g. coordinates and mass moments of inertia of the liquid bulk, assuming negligible influence of fundamental slosh frequency and viscous effects.
X