Refine Your Search

Search Results

Technical Paper

Effects of Cell Geometry on Thermal Shock Resistance of Catalytic Monoliths

1975-02-01
750171
The effects of cell geometry and dimensions on the thermal shock resistance of catalytic monoliths is examined analytically. Two cell geometries, namely square and equilateral triangle, are considered. Thermal gradients predicted by theory compare well with the experimental results. It is found that for equivalent thermal shock resistance the triangular cell requires lower coefficient of thermal expansion than the square cell. Also, as the cell density is increased for higher geometric surface area, both geometries require a reduction in thermal expansion coefficient to preserve their thermal shock resistance. The above comparison does not take into account some of the other considerations which affect the overall performance, such as manufacturing advantage and the conversion efficiency. Also, the triangular cell examined has a cell density of 236/in2 with 20% greater geometric surface area than the square cell with a cell density of 200/in2.
X