Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Characteristics of Ethanol, Butanol, Iso-Octane and Gasoline Sprays and Combustion from a Multi-Hole Injector in a DISI Engine

2008-06-23
2008-01-1591
Recent pressures on vehicle manufacturers to reduce their average fleet levels of CO2 emissions have resulted in an increased drive to improve fuel economy and enable use of fuels developed from renewable sources that can achieve a net reduction in the CO2 output of each vehicle. The most popular choice for spark-ignition engines has been the blending of ethanol with gasoline, where the ethanol is derived either from agricultural or cellulosic sources such as sugar cane, corn or decomposed plant matter. However, other fuels, such as butanol, have also arisen as potential candidates due to their similarities to gasoline, e.g. higher energy density than ethanol. To extract the maximum benefits from these new fuels through optimized engine design and calibration, an understanding of the behaviour of these fuels in modern engines is necessary.
Technical Paper

Mixture Preparation and Combustion Variability in a Spray-Guided DISI Engine

2007-10-29
2007-01-4033
In an attempt to study the numerous contributors towards cyclic variations in combustion in a direct injection spark ignition engine, simultaneous high-speed imaging of fuel injection and flame growth are undertaken on a crank-angle resolved basis in a single-cylinder optical research engine. Batches of images from 100 consecutive cycles are acquired for all conditions with synchronised in-cylinder pressure logging. The engine is motored and fired at stoichiometric conditions at 1500 RPM under part-load and wide-open-throttle conditions (0.5-1.0 bar intake pressure), with injection timing set early in the intake stroke to promote homogeneous mixture formation with a centrally mounted multi-hole injector. Liquid impingement is observed on the cylinder walls and on the piston crown with early intake injection and multiple injection strategies are employed in an attempt to reduce impingement and alter mixture preparation and subsequent combustion.
Technical Paper

Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine

1998-02-01
981186
Laser Doppler velocimetry, phase Doppler anemometry and Mie scattering were applied to a single-cylinder, four-valve, spark-ignition gasoline research engine equipped with a fully transparent liner and piston, to obtain information about the tumble flow and the droplet size and velocity distributions during induction and compression, for lean air/fuel mixture ratios of 17.5 and 24 and with closed-valve and open-valve fuel injection. The mixture distribution obtained with the two injection strategies was correlated with flame images, pressure analysis and exhaust emissions which confirmed the advantages of combining open-valve injection with tumble to allow stable and efficient engine operation at an air/fuel ratio of 24 through charge stratification and faster flame growth.
Technical Paper

Spray Development, Flow Interactions and Wall Impingement in a Direct-Injection Spark-Ignition Engine

2007-11-28
2007-01-2712
Levels of liquid fuel impingement on in-cylinder surfaces in direct injection spark ignition engines have typically been higher than those in port-fuel injection engines due to in-cylinder injection and higher injection pressures. The result is typically an increase in the levels of un-burned hydrocarbons and smoke emissions which reduce the potential fuel economy benefits associated with direct injection engines. Although different injection strategies can be used to reduce these effects to some extent, full optimisation of the injection system and combustion process is only possible through improved understanding of spray development that can be obtained from optical engine investigations under realistic operating conditions. To this extent, the spray formation from a centrally mounted multi-hole injector was studied in a single-cylinder optical direct-injection spark-ignition engine under part-load conditions (0.5 bar intake plenum pressure) at 1500 RPM.
Technical Paper

The Influence of Single and Multiple Injection Strategies on In-Cylinder Flow and Combustion within a DISI Engine

2009-04-20
2009-01-0660
It is widely accepted that engine combustion is fundamentally affected by the in-cylinder charge motion. Flow field structures present at the time and location of spark ignition are known to have a controlling effect on early flame development. Therefore, improved understanding of the variation in flow field structures local to the spark plug at the time of ignition is required. This study investigates the spatial and temporal development of flow field structures within the pent roof combustion chamber of a single cylinder, direct injection spark ignition (DISI) optical engine. High speed particle image velocimetry (HSPIV) has been used to quantify the flow field leading up to and following spark ignition. HSPIV data was recorded at a rate of 5 kHz, providing a temporal resolution of 1.8 crank angle degrees (CAD) between measurement fields and a spatial resolution of 512 by 512 pixels.
X