Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Photographic Study of Spray Impinging onto a Projection on a Wall

1993-10-01
932651
As a fundamental work on Direct Injection Impinging Diffusion Combustion Engine, fuel spray was injected momentary into a pressured CO2 gas and impinged onto a projection on a wall. Instantaneous photograph was taken and analyzed to clarify the spray characteristics. Nozzle opening pressure was varied to clarify its effects on spray characteristics. Nozzle needle was cut to form two pairs of flats on needle surface instead of its cylindrical one. The effect of this needle shape was also studied. Opening pressure of injection nozzle has produced very little effect on the spray tip penetration. Spray thickness is larger when needle opening pressure of injection nozzle is high. Spray tip penetration and spray thickness have become large when widths across flats is narrow.
Technical Paper

New Mixture Formation Technology of Direct Fuel Injection Stratified Charge Si Engine (OSKA) - Test Result with Gasoline Fuel

1988-09-01
881241
The new idea incorporates an impinging part in the central piston cavity. A relatively low injection pressure, lower than that of a conventional IDI Diesel engine, and a single hole fuel nozzle are used. The fuel spray is injected against the impinging part, spreads and forms a fuel-air mixture. Since a comparatively rich fuel-air mixture always stays around the impinging part and ignition is accomplished near the center of the mixture, steady, instantaneous and high-speed combustion is possible. As the fuel-air mixture is formed mostly in the cavity, there is little fuel in the squish area. Therefore, it is possible to prevent end-gas knocking, and in spite of the use of spark ignition, to employ a higher compression ratio than that of the conventional premixed SI engine. Experiments with a single cylinder prototype (4-stroke cycle) engine with gasoline fuel showed that the maximum BMEP was 1.0 MPa and the maximum brake thermal efficiency was 37.7 % (217 g/kW.h).
X