Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development and Validation of a Quasi-Dimensional Model for HCCI Engine Performance and Emissions Studies Under Turbocharged Conditions

2002-05-06
2002-01-1757
A PC-based, computationally-efficient, quasi-dimensional simulation of HCCI engine performance and emissions has been developed with the intent to bridge the gap between zero-dimensional and sequential fluid-mechanic - thermo-kinetic models. The model couples a detailed chemistry description, a core gas model, a predictive boundary layer model, and a ring-dynamics crevice flow model. The thermal boundary layer, which is axially discretized to account for the relative piston motion, is modeled using compressible energy arguments. The ring-pack crevice zone is modeled using a coupled ring dynamic and flow model. The physically-based mathematical model is solved within the context of a single simulation framework, which lends to flexibility and expediency in performing a range of parametric studies. The simulation was validated under turbo-charged conditions using data obtained from a Caterpillar 3500 test engine.
Technical Paper

An Experimental Investigation of PCCI-DI Combustion and Emissions in a Heavy-Duty Diesel Engine

2003-03-03
2003-01-0345
An experimental investigation of partial premixed charge compression ignition (PCCI) in combination with direct fuel injection was conducted on a Caterpillar C-15 heavy-duty diesel engine (HDDE). The intent of the program was to investigate the performance, emissions, and efficiency characteristics of the concept. A portion of the fuel was delivered to the intake manifold using air-assist port fuel injectors. The spray droplet characteristics were measured, for several different injector geometries, over a range of thermodynamic conditions. Subsequently, the optimized port fuel injector (PFI) was utilized in the engine tests. The engine tests were run at conditions ranging from 1200 - 1800 RPM, loads ranging from 25 - 75%, and PFI quantities ranging from approximately 10 - 70%. The tests showed that oxides of Nitrogen (NOX) emissions did not decrease dramatically with partial premixing.
X