Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimization of the E-TEC™ Combustion System for Direct-Injected Two-Stroke Engines Toward 3-Star Emissions

2003-09-16
2003-32-0007
This paper describes important aspects of the development process for meeting CARB's “Ultra-Low” 3-Star emissions with engines using the new E-TEC™ direct injection system. In-house research and analysis of data from other state-of the-art engines were used to determine achievable emission levels and to set the development targets. A detailed mode-point-specific analysis of the emissions potential of the FICHT® direct injection system revealed excellent system capability in homogeneous operation and limited potential for stratified operation. Based on these results, the development work was focused on the reduction of stratified hydrocarbon emissions. Wall impingement of the fuel spray onto the piston surface was identified as a major source of hydrocarbon emissions during stratified operation. A zero-dimensional simulation of various parameters affecting wall impingement indicates that droplet size, in-cylinder temperature, and penetration velocity are the three major factors.
Technical Paper

Carbon Monoxide Emissions from Marine Outboard Engines

2004-09-27
2004-32-0011
Carbon Monoxide (CO) has become a pressing issue for the recreational marine industry. An increasing number of boating incidents have been linked to CO poisoning caused by emissions from gasoline-powered marine engines. Measurements by the National Institute for Occupational Safety and Health (NIOSH) and the U.S. Coast Guard have confirmed potentially hazardous CO concentrations near many of these engines. The measurements have also shown much lower CO concentrations for Evinrude® two-stroke direct-injected engines. This paper reviews national and international CO emission regulations for marine engines and discusses CO formation and reduction mechanisms. The differences between homogeneous- and stratified-charge combustion systems on CO formation, resulting from design and calibration criteria, are analyzed.
X