Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Identification of the Relation Between Crank Shaft Bending and Interior Noise of A/T Vehicle in Idle State

1993-03-01
930618
This paper shows the cause and the solution to the uncommon noise which happens ½ order component of engine rpm when a vehicle with automatic transmission has an air conditioning load and “drive” range load on the engine. By measuring cylinder pressure, main bearing cap vibration, engine mount vibration, and interior noise simultaneously, the cause of the noise can be proved by analyzing and comparing the data. The cause of the uncommon noise is bending vibration of the crank shaft. To solve the problem, one can change the crank shaft dynamics by reducing the mass of the damper pulley.
Technical Paper

Three Dimensional Crankshaft Vibration Analysis Including Gyroscopic Effect

1994-03-01
940699
It has been recently reported that the crankshaft vibration provides the main exciting source in the power train vibration. This paper presents the analytical method for the vibration of crankshaft by using the finite element method. The optimization process is employed so that the beam model of the crankshaft can have the same natural frequencies as those of solid model on the free-free condition. The mode analysis of the crankshaft whirling is made in the consideration of the gyroscopic effect and the changes of the natural frequencies are also studied with the increase of the engine speed. Finally, the forced vibration of the crankshaft is solved on the time domain and the results are compared with those of the experimental measurements of bending moment by using the strain gage. This crankshft system model can be used to analyze the forced vibration of the full power train as well.
Technical Paper

A Technique to Identify the Structure Borne Sound Sources Induced by Powertrain Vibration Behavior

1995-05-01
951235
Identification of structure borne sound sources induced by the structural vibration of an automotive powertrain has been studied. Based on the principal component analysis which uses singular value decomposition of a matrix consisting of the auto- and cross-spectra, the operating vibrational analysis is performed. The quantitative description of the output power due to intrinsic incoherent source is addressed. The applicability of the technique is tested both numerically and experimentally. First, the coherence analysis is numerically carried out with a simple structure which is modeled as multi-input and single output to identify the structure borne noise generation process. Second, the actual vibrational behavior of a powertrain structure and the interior noise analysis of a car under the running condition are carried out. The technique is shown to be very effective in the identification of the structure borne noise sources.
Technical Paper

Torsional Vibration Characteristics of a Crankshaft with a Rubber Damper

1989-11-01
891232
The crankshaft torsional vibration angle is measured from a running engine, using a toothed wheel attached to the front of crankshaft. The torsional vibration stress near the node of torsional vibration is also measured by using strain gages mounted on the journal of crankshaft in a running engine. A theoretical analysis of torsional vibration of crankshaft is performed with a simplified model subject to the excitation torque. The comparison between the theoretical and experimental results shows that the idealized approach is applicable to predict the torsional vibration of crankshaft. It is found that the torsional vibration of crankshaft is mainly dependent upon the characteristics of rubber damper, i.e., the stiffness and damping coefficient of rubber, and the inertia of damper ring. It is recognized that the rubber damper should be carefully selected considering the variation in the dynamic characteristics of rubber.
X