Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of Di-(2-ethoxyethyl) Carbonate as an Oxygenated Fuel on Diesel Fuel Properties and Engine Performances

2014-04-01
2014-01-1449
A new oxygenate of di-(2-ethoxyethyl) carbonate was synthesized, and its structure was identified by FT-IR, 1H NMR and GC-MS analyses. The effects of addition of the substance to diesel fuel on fuel properties and engine performance were studied. Results showed that this oxygenate is miscible with individual hydrocarbons in any proportion under normal temperature of 25°C. When di-(2-ethoxyethyl) carbonate is introduced to a diesel fuel, kinematic viscosity does not change notably, smoke point increases linearly. Flash point and solidifying point decline remarkably even at low content level of 5%(v) of the oxygenate, whereas they do not decrease further notably with its content increasing. The compound does not exert corrosion effect on cupric metal. When a diesel engine was fueled with the diesel fuel containing 25%(v) of the oxygenate.
Technical Paper

Combustion and Emission Characteristics in a DME Premixed Charge Compression Ignition Diesel Engine

2014-04-01
2014-01-1292
Premixed charge compression ignition (PCCI) combustion has been shown to be a promising combustion technique to improve the combustion process and simultaneously reduce both Nitrogen oxides (NOx) and particulate matter (PM) emissions. The combination of port dimethyl ether (DME) induction and in-cylinder diesel direct-injection compression ignition (DICI) combustion was studied in a YTR 2105 engine. The main purposes of this paper were to investigate the effects of DME introduction on the combustion and emission characteristics of a diesel engine. Results obtained revealed that PCCI combustion process was composed of the homogeneous charge compression ignition (HCCI) combustion and conventional diffusion combustion. As the DME quantity was increased, the start of combustion (SOC) was advanced. The peak values of in-cylinder pressure and mass averaged temperature increased as well as the maximum heat release rate of DME HCCI combustion.
Technical Paper

Investigation of Ethylene Glycol Monomethyl Ether Soyate as a Biofuel

2015-04-14
2015-01-0955
In the present paper, a new biofuel ethylene glycol monomethyl ether soyate has been developed. The biofuel was synthesized with a refined soybean oil and ethylene glycol monomethyl ether as reactants and sodium as catalyst under 90°C. The synthesized crude product was purified and structurally identified through Fourier Transform Infrared Spectrum (FT-IR), 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR) and Gel Permeation Chromatography (GPC) analyses. The physicochemical properties of the biofuel and its addition effects on properties of diesel fuel were measured according to China national standard test methods. A single cylinder diesel engine was employed to evaluate the influences of the biofuel on engine fuel economy and engine-out emissions of CO, HC, NOx and smoke.
X