Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of an Abdominal Deformation Measuring System for Hybrid III Dummy

1994-11-01
942223
A new abdominal deformation measuring system for Hybrid III dummy has been developed in order to evaluate the abdominal injury by using the dummy. From the dynamic abdominal deformation of the dummy, the abdominal compression velocity V, the compression ratio C, and the maximum value of the product VC, expressed as [VC]MAX, can be calculated. This abdominal deformation measuring system consists of an abdominal insert having the same compression characteristics as those of the human body, a dynamic deformation sensor, and an analysis program. The abdominal insert is made of elastic foam rubber and has a shape fitted to Hybrid III. The deformation sensor in a band shape is a thin stainless steel band with 25 strain gauges on it. Each strain gauge measures the curvature on its mounted position. Since the deformation sensor is located along the surface of the dummy abdomen, the sensor deforms as the dummy surface deforms.
Technical Paper

Experimental and Analytical Study of Knee Fracture Mechanisms in a Frontal Knee Impact

1996-11-01
962423
The mechanisms of knee fracture were studied experimentally using cadaveric knees and analytically by computer simulation. Ten 90 degree flexed knees were impacted frontally by a 20 kg pendulum with a rigid surface, a 450 psi (3.103 MPa) crush strength and a 100 psi (0.689 MPa) crush strength aluminum honeycomb padding and a 50 psi (0.345 MPa) crush strength paper honeycomb padding at a velocity of about five m/s. During rigid surface impact, a patella fracture and a split condylar fracture were observed. The split condylar fracture was generated by the patella pushing the condyles apart, based on a finite element model using the maximum principal stress as the injury criterion. In the case of the 450 psi aluminum honeycomb padding, the split condylar fracture still occurred, but no patella fractures were observed because the honeycomb provided a more uniform distribution of patella load. No bony fractures in the knee area occurred for impacts with a 50 psi paper honeycomb padding.
X