Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Cooling Module Containing a Radiator and a Condenser - Part 2: Alloy Development

2001-03-05
2001-01-1019
In conventional automobile designs, a radiator and a condenser are typically configured and mounted independently of each other. We have developed a smaller and more powerful cooling module by integrating these two products into one piece. The new cooling module has been designed to share the fin material and to have an insulating slit and other means for effective prevention of heat loss that occurs due to thermal conduction between the radiator and the condenser1). In addition, as one of the key techniques for integrating fins, we studied thermal spraying of brazing filler to the tube material and were able to achieve a practical-level cooling module through use of high-performance fins, contributing largely to the efforts to create a more compact, higher performance cooling module.
Technical Paper

Compact Magnetic Solenoid Valves Using a Composite Magnetic Material

1997-02-24
970852
The recent progress of electronic control systems in vehicles is remarkable as evidenced by the development of electronic fuel injection systems,(EFI), automatic transmission control systems, and anti-lock brake systems,(ABS). The number of actuators for the systems has been increasing. Consequently, a need has been identified for a reduction in volume and number of the system actuators for control purposes. A composite magnetic material has been developed with the aim of miniaturizing magnetic solenoid valves for actuator applications. A composite magnetic material is such that both ferromagnetic and paramagnetic sections coexist within a single material, and can contribute to optimization of the magnetic circuit of a solenoid valve. This paper describes the development of a composite magnetic material, and its resultant characteristics.
X