Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effect of Oil Ring Geometry on Oil Film Thickness in the Circumferential Direction of the Cylinder

1998-10-19
982578
This paper describes measurements of oil film thickness of piston ring packages which have different oil control rings. The oil film thickness measurements were taken at three points, namely, the piston thrust side, front side and rear side, by the Laser Induced Fluorescence Method(LIF). One of the main findings is that the oil film thickness on the thrust side varies greatly from cycle to cycle, while cyclic variations are smaller on the front and rear sides. This difference is due to the smaller inclination of the oil control rings on the front and rear sides, compared with that on the thrust side. It is also found that oil consumption has a good correlation with oil film thickness on the thrust side and that the thrust side oil film thickness becomes thinner as the oil ring becomes narrower.
Technical Paper

L-Ring Effect on Air-Cooled Two-Stroke Gasoline Engines

1973-02-01
730188
An L-ring (a piston ring with an L-shaped cross section) has been used on some air-cooled two-stroke gasoline engines. Good performance has been obtained; the reason is unknown. The maximum power of these small engines (used mainly for small cars, motorcycles, outboard motors, snowmobiles, etc.) is limited by its thermal load endurance. So piston and cylinder become the most important factors to the engine's performance. L-ring effects are examined in the light of these temperature measurements.
Technical Paper

Development of a Hydrogen Powered Medium Duty Truck

1987-11-08
871168
Considerable amount of research work on hydrogen fueled engines has been conducted for 17 years in Musashi Institute of Technology. The primary purpose of the research has been to develop a hydrogen powered autmobile, and in order to realized it, various innovations have been applied and tested. The newest outcome of this 17 years research was Musashi-7 Track, which demonstrated its performance in Innovation vehicle Design Competition held in Vancouver in July 1986. Musashi-7 Track was a modified medium duty truck, which was originally made by Hino Motors, and had a hydrogen powered engine. The track was equipped with 150 ℓ liquid hydrogen (LH2) tank and 8 MPa high pressure LH2 pump. The pump delivered 8 MPa high pressure hydrogen gas to the engine and the fuel was injected to a hot surface igniter in DI combustion chamber. This type of hydrogen enigne has following advantages. Firstly, fuel corrier weight and volume can be much smaller than those of metal-hydrides (MH).
Technical Paper

Combustion Improvement of Liquid Hydrogen Fueled Engine for Medium-Duty Trucks

1987-02-01
870535
A hydrogen powered vehicle system consisted of LH2 tank high pressure LH2 -pump, a device to inject hydrogen onto the hot surface, and ignitor in turbo-engine of CR 12:1 had been developed by Musashi Institute of Technology- Recently the authors applied this system to a medium duty truck produced by Hino Motors Ltd. Then following improvement were required. (1) Gas tightness and endurance of hydrogen injector were improved by the selection of material, size, finishing and by suppling a small amount of lubricating oil. (2) Mixture formation of the injected hydrogen with the compressed air was improved by tuning up the size and number of the nozzle holes and injection timing with the hydraulic pump and valve. (3) A small amount of hydrogen was supplied into the intake manifold. It reduced the combustion noise and also it recovered the evaporation loss in the LH2 -tank.
Technical Paper

Oil Film Thickness Measurement and Analysis of a Three Ring Pack in an Operating Diesel Engine

2000-06-19
2000-01-1787
Oil film thicknesses of the piston top ring and the second ring of a truck diesel engine have been measured simultaneously by embedding capacitance type clearance sensors in the ring sliding surfaces. Owing to the above, several phenomena such as the variation in oil film thickness of each ring in one cycle, correlation between the rings, difference in oil film thickness between the thrust and counter thrust-sides, effects of engine operating conditions on oil film thickness, etc. have been determined. Efforts have been also made to analyze the causes of such phenomena according to the measured results of piston slap motion and ring motions, and the calculated results of oil film thickness.
Technical Paper

Variation of Piston Ring Oil Film Thickness in an Internal Combustion Engine - Comparison Between Thrust and Anti-Thrust Sides

1998-02-23
980563
This paper describes a measurement method using laser induced fluorescence we have developed for simple simultaneous measurements of piston ring oil film thickness at plural points for internal combustion engines. The findings obtained by the measurements of oil film thickness on both thrust and anti-thrust sides of the piston for a mono-cylinder compact diesel engine using this new measurement method are also discussed in this paper. One of main findings is that the oil film thickness of each ring on both sides differs markedly in terms of the absolute value and the stroke- to-stroke variation. It is found that this difference in oil film thickness is caused by the difference in the amount of lubricating oil supplied to the oil ring, and the effect is greater than that of engine speed or load.
X