Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Surface and Tribological Characterization of Coatings for Friction and Wear Reduction

1993-10-01
932787
The tribological characteristics of three different coated steel plates are compared to a bare steel plate. Coatings included a Ag/Mo coating, and two tungsten disulfide-based coatings. These materials are being considered as alternatives to bare steel and cast iron in automotive engine or powertrain components such as engine cylinders, bearings, and gears. In order to understand their tribological behavior, these coatings have been characterized in terms of surface coating properties, wear resistance, and lubricant interaction between the coating and the additive package in a test grease. Cameron-Plint test results show that the plates coated with Ag/Mo, and both tungsten disulfide-based materials all have lower friction and better wear resistance compared with the bare steel plate. Tungsten disulfide and Ag/Mo-coated plates appear to interact with grease additives. In some cases these specimens formed antiwear films.
Technical Paper

Engine Oil Effects on Friction and Wear Using 2.2L Direct Injection Diesel Engine Components for Bench Testing Part 2: Tribology Bench Test Results and Surface Analyses

2004-06-08
2004-01-2005
The effects of lubricating oil on friction and wear were investigated using light-duty 2.2L compression ignition direct injection (CIDI) engine components for bench testing. A matrix of test oils varying in viscosity, friction modifier level and chemistry, and base stock chemistry (mineral and synthetic) was investigated. Among all engine oils used for bench tests, the engine oil containing MoDTC friction modifier showed the lowest friction compared with the engine oils with organic friction modifier or the other engine oils without any friction modifier. Mineral-based engine oils of the same viscosity grade and oil formulation had slightly lower friction than synthetic-based engine oils.
Technical Paper

An Investigation of Tribological Characteristics of Energy-Conserving Engine Oils Using a Reciprocating Bench Test

2000-06-19
2000-01-1781
Engine design and tribology engineers are constantly challenged to develop advanced products with reduced weight, reduced friction, longer life, and higher engine operating temperatures. The resulting engine systems must also meet more demanding emissions and fuel economy targets. Advanced energy-conserving lubricants and surface coatings are concurrently evolving to meet the needs of new engine materials. Because of the enormous cost and time associated with engine testing, much interest is being focused on the development of representative and repeatable bench tests for evaluation of engine materials and lubricants. The authors have developed a bench test employing reciprocating motion for evaluating friction and energy-conserving characteristics of lubricants.
Book

Automotive Lubricants and Testing

2012-10-31
This new book provides a comprehensive overview of various lubrication aspects of a typical powertrain system including the engine, transmission, driveline, chassis, and other components. The manual addresses major issues and current development status of automotive lubricant test methods. Topics also cover advanced lubrication and tribochemistry of the powertrain system, such as diesel fuel lubrication, specialized automotive lubricant testing development, filtration testing of automotive lubricants, lubrication of constant velocity joints, and biodegradable automotive lubricants.
X