Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Investigation on Flow Rate Performance and LPLi Engine Application of Turbine Pump with Various Composition Ratio of LPG Fuel

2007-08-05
2007-01-3629
This study has mainly focused on the development of turbine type LPLi pump. The flow rate of turbine pump was examined with various fuel blends of LPG. The experimental results of flow rate and fuel injection quantity of turbine type fuel pump have equivalent or better performance using summer season LPG fuel compared to BLDC one. However, the flow rate of turbine type pump decreased as the proportion of propane content in LPG fuel increased. The cause of flow drop was thought as the cavitations phenomena at high speed impeller component. Finally, the noisy characteristics and durability performance of turbine pump were tested. The hot start delay of LPLi engine was assessed with various composition ratio of LPG. The engine starting and pressure settling time of turbine pump showed equivalent performance to those of BLDC one.
Technical Paper

Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine

2011-10-06
2011-28-0022
A nano-sized PM and THC emission characteristics were investigated according to the fuel injection strategy such as a pressure and timing in the GDI engine. On the part-load condition, the particulate emissions exhibited a strong sensitivity to the injection timing. The fuel injection pressure also had a great association with the nano-particles and THC. A size of PM exhausted from the GDI engine located near 10nm on the part-load. In contrast, accumulation mode particles within 60 - 80nm mainly exhausted during the cold transient start phase. Increment of fuel injection pressure positively affected on the nano-particle and THC emissions during the start of the engine, as well.
Technical Paper

Comparative Evaluation of Engine Control Strategy on Regulated Emissions and Nano-Particle Characteristics of LPG Direct Injection (LPDI) Vehicle During the Cold Start and the Hot Phases in the FTP-75 Cycle

2014-04-01
2014-01-1232
To evaluate the potential of a dedicated LPG direct injection (LPDI) vehicle, we investigated several engine control parameters that are closely related to the characteristics of mixture preparation and nano-particle emissions. Many researches have pointed out that any amount of particle emissions from GDI vehicles were made during the cold start and cold transient phase. Therefore, in the study, four types of engine control strategies for the LPDI vehicle were applied to evaluate particle number (PN) concentration and regulated emissions in the cold start phase and the hot start phase under the FTP-75 cycle. The reduction rate of the PN concentration with LPG application reached approximately over 99% less than that of the GDI vehicle.
X