Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

Effects of Gas Composition on the Performance and Hydrocarbon Emissions for CNG Engines

1998-08-11
981918
Natural gas is considered to be an alternative fuel for passenger cars, truck transportation and stationary engines that can provide both good environmental effect and energy security. However, as the composition of fuel natural gas varies with the location, climate and other factors, such changes in fuel properties affect emission characteristics and performance of CNG (Compressed Natural Gas) engines. The purpose of the present study is to investigate effects of difference in gas composition on engine performance and hydrocarbon emission characteristics. The results show that THC decreases with an increasing WI (Wobber Index) and MCP (Maximum Combustion Potential) of natural gas. The power is shown to be proportional to the total heat value of the actual amount of gas entering the cylinder. There is 20% power variation depending on the composition of gas when the A/F ratio and spark timing are adjusted and fixed for a specific gas.
Technical Paper

Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine

2011-10-06
2011-28-0022
A nano-sized PM and THC emission characteristics were investigated according to the fuel injection strategy such as a pressure and timing in the GDI engine. On the part-load condition, the particulate emissions exhibited a strong sensitivity to the injection timing. The fuel injection pressure also had a great association with the nano-particles and THC. A size of PM exhausted from the GDI engine located near 10nm on the part-load. In contrast, accumulation mode particles within 60 - 80nm mainly exhausted during the cold transient start phase. Increment of fuel injection pressure positively affected on the nano-particle and THC emissions during the start of the engine, as well.
Technical Paper

Fuel Effect on Particle Emissions of a Direct Injection Engine

2013-04-08
2013-01-1559
PN emissions were measured using a 2012 1.6L gasoline direct injection (GDI) engine vehicle. The measurements were performed over NEDC using domestic fuel from South Korea and Euro 5 certification fuel, also FTP-75 cycle using domestic fuel and Indolene (official emission test fuel in the US). Domestic fuel is the most volatile and has the least aromatics, Euro 5 certification fuel is the least volatile and has the most aromatics. Lower volatile gasoline generates more particle emissions due to diffusion combustion of fuel attached on the piston and fuel residues which are burned in its liquid form. Gasoline with more aromatic contents generates more particle emissions, too. Because aromatics have higher boiling point, lower vapor pressure and ring structures. Fuel specification difference resulted in PN emission difference. In NEDC tests, result using Euro 5 certification fuel was 77.0% higher than the result using domestic fuel.
Technical Paper

Strategies for Particle Emissions Reduction from GDI Engines

2013-04-08
2013-01-1556
In this study, present level of 2.0L GDI vehicle is measured and it is figured out how to reduce particle emissions against European emission limit(EURO 6) and US emissions standards(LEV 3) through engine test and vehicle test. A cause of PM and PN formation is divided into several reasons. This paper describes the optimization of engine control parameter and hardware change like injector type and injection target position like spray pattern optimization with minimizing side effect. If particle emission limit is getting more strengthen GPF(Gasoline Particle Filter) is a simple solution to meet particle emission limit. But engine performance decreases according to exhaust pressure increase and there is cost problem. This paper have shown that 60% level of euro6c PN limit is accomplished without a GPF at demonstrated vehicle.
Technical Paper

Flow Analysis and Catalytic Characteristics for the Various Catalyst Cell Shapes

1999-05-03
1999-01-1541
The shape of unit cell of catalytic converter has great influence on the conversion efficiency and pressure drop characteristics. Therefore, the properties of design parameters of catalyst monolith were analyzed and the parameters of various cell shapes of catalyst were compared. Also, the numerical study of a three dimensional compressible flow in a Close-coupled Catalyst Converter (CCC) system was performed to investigate the flow characteristics and the flow distribution of exhaust gases. Unsteady flow analysis shows that severe interferences of each pulsating exhaust gas flow as well as geometric factors (junction, mixing pipe, cell shape etc.) influence greatly on the flow uniformity and flow characteristic in substrate. The results can be applied for the catalytic converter design.
Technical Paper

Comparative Evaluation of Engine Control Strategy on Regulated Emissions and Nano-Particle Characteristics of LPG Direct Injection (LPDI) Vehicle During the Cold Start and the Hot Phases in the FTP-75 Cycle

2014-04-01
2014-01-1232
To evaluate the potential of a dedicated LPG direct injection (LPDI) vehicle, we investigated several engine control parameters that are closely related to the characteristics of mixture preparation and nano-particle emissions. Many researches have pointed out that any amount of particle emissions from GDI vehicles were made during the cold start and cold transient phase. Therefore, in the study, four types of engine control strategies for the LPDI vehicle were applied to evaluate particle number (PN) concentration and regulated emissions in the cold start phase and the hot start phase under the FTP-75 cycle. The reduction rate of the PN concentration with LPG application reached approximately over 99% less than that of the GDI vehicle.
X