Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Computational Investigation into the Cool Flame Region in HCCI Combustion

2004-03-08
2004-01-0552
Multi-dimensional computational efforts using comprehensive and skeletal kinetics have been made to investigate the cool flame region in HCCI combustion. The work was done in parallel to an experimental study that showed the impact of the negative temperature coefficient and the cool flame on the start of combustion using different fuels, which is now the focus of the simulation work. Experiments in a single cylinder CFR research engine with n-butane and a primary reference fuel with an octane number of 70 (PRF 70) were modeled. A comparison of the pressure and heat release traces of the experimental and computational results shows the difficulties in predicting the heat release in the cool flame region. The behavior of the driving radicals for two-stage ignition is studied and is compared to the behavior for a single-ignition from the literature. Model results show that PRF 70 exhibits more pronounced cool flame heat release than n-butane.
Journal Article

Modeling the Effects of Drop Impingement Frequency on Heated Walls at Engine Conditions

2022-03-29
2022-01-0508
Understanding the fundamental details of drop/wall interactions is important to improving engine performance. Most of the drop-wall interactions studies are based on the impact of a single drop on the wall. To accurately mimic and model the real engine conditions, it is necessary to characterize spray/wall interactions with different impingement frequencies at a wide range of wall temperatures. In this study, a numerical method, based on Smoothed Particle Hydrodynamics (SPH), is used to simulate consecutive droplet impacts on a heated wall both below and above the Leidenfrost temperature. Impact regimes are identified for various impact conditions by analyzing the time evolution of the post-impingement process of n-heptane drops at different impingement frequencies and wall surface temperatures. For wall temperature below the Leidenfrost temperature, the recoiled film does not leave the surface.
X