Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Relationship Between Monochromatic Gas Radiation Characteristics and SI Engine Combustion Parameters

1993-03-01
930216
Relationships between radiant emissions, as measured by an in-cylinder optical sensor, and spark-ignition engine combustion parameters are presented for possible use in engine combustion diagnostics and future engine control strategies. A monochromatic gas radiation model, developed in a previous study, was used to derive a series of relationships between the measured radiant emission characteristics and several spark-ignition engine combustion parameters, such as the amplitude and phasing of the peak heat-release rate, combustion duration, IMEP, NOx emission, pressure, trapped mass and exhaust-gas temperature. In addition, many engine parameters of interest can be estimated indirectly from the radiation signal using empirical models. Correlations of air-fuel ratio and exhaust emissions are presented which contain a combination of radiant emission parameters and known base-engine operating parameters, such as intake manifold pressure, etc.
Technical Paper

Application of Conditional Sampling to the Study of Cyclic Variability in a Spark-Ignition Engine

1987-11-08
871173
Conditional sampling of cylinder-pressure data is used to investigate cyclic variability in a premixed-charge spark-ignited engine operating under fuel-lean conditions. Unlike straight ensemble averaging of pressure data, conditional sampling applies a set of constraints to the pressure data such that like combustion events can be identified and grouped together. Ensemble averaging of pressure data from an engine that exhibits significant cycle-to-cycle variation is shown to produce a mean pressure history that is not representative of the combustion process. Conditional sampling provides a means of identifying and analyzing the different groups of pressure histories and therefore the different types of combustion processes that occur in an engine that exhibits cyclic variability.
X