Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

2014-04-01
2014-01-1004
Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production (“Baseline”), an advanced high strength steel and aluminum design (“LWSV”), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle.
Technical Paper

Environmental Evaluation of Lightweight Exterior Body Panels in New Generation Vehicles

2002-06-03
2002-01-1965
The Center for Clean Products has conducted a life-cycle assessment involving a comparison of exterior body closure panels made of different lightweight materials (aluminum, carbon fiber-reinforced polymer [CFRP] and glass fiber-reinforced polymer [GFRP]), to steel closure panels weighing 220 lbs as the baseline. In an additional, more forward-looking assessment, a monocoque body made of a carbon fiber-based composite was assumed to replace a conventional steel body, resulting in a substantial weight reduction (more than 60%). The primary results reveal that CFRP appears to be the least environmentally burdensome material in 9 of the 14 impact categories evaluated. This is mainly due to the fact that CFRP has the maximum weight reduction potential of all the materials evaluated (about 60% over steel), resulting in a much smaller quantity of material needed.
X