Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

DEVELOPMENT OF A UNIQUE, GAS-INJECTION MOLDED DOOR HARDWARE MODULE FRAME

1996-02-01
960968
A unique design, engineering, and manufacturing approach has been used to create the first all-plastic door hardware module frame. The result of many years of intensive development efforts by a team of companies, the gas-assist injection molded frame features a high degree of parts consolidation and has been critically acclaimed as “the first major metal-replacement automotive part since the bumper, a quantum leap in injection molding complexity, and the biggest commercial breakthrough ever in gas assist molding [1].” The program also proved to be an excellent example of the types of technological breakthroughs that can come from concurrent engineering and strategic partnering. This paper will provide an overview of the component's development, describe the many challenges facing the team, and share solutions that contributed to the success of the program.
Technical Paper

All Olefinic Interiors-What Will It Take To Happen?

2000-03-06
2000-01-0632
TPO is getting wider acceptance for automotive applications. An exterior application like a fascia is a very good example. Interiors are still a challenge due to many reasons including overall system cost. For interior applications, “all-olefin” means it mainly consists of three materials: TPO skin, cross-linked olefinic-based foam and PP substrate. The driving force for TPO in Europe is mainly recyclability while in the USA, it is long-term durability. This paper describes the key limitations of the current TPO systems which are: poor grain retention of TPO skin, shrinkage in-consistency of the skin, high cost of priming (or other treatments) and painting of the skin, lower process window of the semi-crystalline TPO material during thermoforming or In-mold lamination / Low pressure molding, high cost of the foam, low tear strength of the foam for deep draw ratio etc.
X