Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Verification of Residual Compression in Tempered Automotive Glass with Holes

2003-01-18
2003-26-0012
Tempered float glass is commonly used for both side windows and backlites in the automotive industry. The success of such products is primarily attributed to high level of residual compression, following tempering, which provides abrasion resistance as well as 3X higher functional strength to sustain mechanical, vibrational and thermal stresses during the vehicle's lifetime. Certain applications of tempered glass, however, require mounting holes whose surface-finish must be controlled carefully to withstand transient tensile stresses during tempering. Simultaneously, the nature and magnitude of residual compression at the hole must provide sufficient robustness to bear mounting, vibrational and thermal stresses throughout the life of the vehicle. This paper presents (i) analysis of residual compression at the hole, (ii) measurement of biaxial strength of annealed glass with hole at center, and (iii) measurement of biaxial strength of tempered glass with hole at center.
Technical Paper

Failure Modes During Static and Impact Loading of Light-Weight Rectangular Glass Headlamps

1984-04-01
840745
An approximate analytical solution for stress distribution in the rectangular lens of a glass headlamp due to static and impact loading is presented. Both low mass/high velocity and high mass/low velocity impact data and the resulting failure modes are discussed. Generally, glass headlamp lenses break either due to Hertz stress (front surface under high localized tension), or due to flexural stress (back surface under tension due to bending), or the combination of two. Failure due to flexural stress is illustrated by a star-crack, while that due to Hertz stress is illustrated by a Hertzian cone or “bullet hole” in the lens. The failure mode during low mass/high velocity impact is predominantly Hertzian while that during high mass/low velocity impact is flexural for lenses 0.120″ to 0.150′ thick. No significant differences are observed in the impact resistance of standard and light-weight lenses in this thickness range.
X