Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

On-Line Oil Consumption Measurement and Characterization of an Automotive Gasoline Engine by SO2 Method

1992-02-01
920652
An on-line oil consumption measurement system using the SO2 tracer method has characterized automotive gasoline engine oil consumption under various engine operating conditions, including a 200-hour durability test. An oil consumption map of total engine, individual cylinder, and valve train was produced for various speed and load ranges under both steady-state and step-transient operating conditions. The effect of spark timing as an additional engine parameter on the oil consumption was also investigated. Oil consumption maps have enlightened the conventional understanding of oil consumption characteristics and broadened the areas of concern for control technologies. This paper reports the benefit of the on-line oil consumption measurement system, the result of oil consumption history over the durability test, discrete measurement of oil consumption contribution within the engine, and various oil consumption characteristics affected by engine operating conditions.
Technical Paper

Instantaneous Unburned Oil Consumption Measurement in a Diesel Engine Using SO2 Tracer Technique

1992-10-01
922196
The contribution of lubricating oil to diesel engine particulate emissions is of concern not only because of stringent particulate emissions standards but also because of engine-to-engine variability. Unburned oil contributes directly to the particulate soluble organic fraction. A real-time oil consumption measurement technique previously developed was further refined to also measure real-time unburned oil consumption. The technique uses high sulfur oil, low sulfur fuel, and fast response, sensitive SO2 detection instrumentation. Total and unburned oil consumption maps over the engine operating range are presented. Results show that both total and unburned oil consumption generally increase as speed and load are increased. Unburned oil consumption shows some peaks at intermediate speed, high-load conditions. Oil consumption from individual cylinders was measured and shown to be approximately equal.
Technical Paper

Observation of Transient Oil Consumption with In-Cylinder Variables

1996-10-01
961910
Only a limited understanding of the oil consumption mechanism appears to exist, especially oil consumption under transient engine operating conditions. This is probably due to the difficulty in engine instrumentation for measuring not only oil consumption, but also for measuring the associated in-cylinder variables. Because of this difficulty, a relatively large number of experiments and tests are often necessary for the development of each engine design in order to achieve the target oil consumption that meets the requirements for particulate emissions standards, oil economy, and engine reliability and durability. Increased understanding and logical approaches are believed to be necessary in developing the oil-consumption reduction technology that effectively and efficiently accomplishes the tasks of low oil-consumption engine development.
Technical Paper

Combustion System Development of a Two-Stroke, Spark-Assisted DI Diesel Engine

1988-02-01
880169
A loop-scavenged, two-stroke, spark-assisted DI diesel engine was developed by modifying an outboard marine gasoline engine to operate on diesel fuel with high fuel efficiency similar to a diesel engine, yet retain the two-stroke engine advantages of low cost, light weight, and high power-to-weight ratio. Engine modification was concentrated in the area of the combustion system, including transfer port design to generate air swirl in the cylinder, and combustion chamber design to generate air squish and turbulence. Bore and stroke (84 × 72 mm) remained the same as those of the base engine. The experimental engine used the production engine's piston, crankshaft, connecting rod, bearings, and cylinder block. The transfer port design was optimized using a flow test bench for best swirl and air flow pattern with a simple flow visualization technique. The best combustion chamber geometry, compression ratio, and fuel injection spray pattern were determined through engine experiments.
X