Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Enhancing Fighter Engine Airstarting Capability

1991-04-01
911190
In addition to designing fighter engines for stall-free idle to maximum power operation and stall recoverability, it is important to give proper emphasis to sub-idle operation for successful starting. This permits the pilot to confidently bring the engine on-line following an inadvertent flameout caused by either the airplane departing the flight envelope or by a fuel interrupt due to a malfunction. Thus reliable and fast airstart capability enhances flight safety especially of single engine airplanes. Flight testing, therefore, is substantially devoted to airstart evaluation. The paper first explains the influence of engine design features on airstarting, particularly the advantages of the low bypass ratio cycle F100-PW-229 (PW229) engine, which is an increased thrust derivative (IPE) of the highly successful F100-PW-220 engine. Enhancing airstarting capability of the PW229 using variable geometry features and digital control flexibility is discussed.
Technical Paper

Investigating Turbofan Engine Internal Aerodynamics

1996-10-01
965630
The intent of a balanced engine design process is to satisfy all systems requirements including operability, performance and durability. Due to the complexity of the trade-off process of the various metrics it is possible that system improvements may be required after a turbofan engine enters production. Also, in the case of derivative engines, configured for increased performance, the flowpath aerodynamics may be challenged and may have to be examined to ensure there is no flow field anomaly. By incorporating special diagnostic aero instrumentation at the earliest opportunity any required operability improvement can be identified and corrective action taken. The paper first delineates the component matching challenges of twin spool mixed flow turbofan engines. Then it discusses investigation of various potential destabilizing influences.
X