Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparison of Measured and Predicted Combustion Characteristics of a Four-Valve S.I. Engine

1993-03-01
930613
An S.I. combustion model has been developed for application in phenomenological engine simulations. The model is based on a turbulent flame concept, linked to an in-cylinder flow and turbulence calculation. The flame front is assumed to spread from the spark plug and propagate through the cylinder, while interacting with the combustion chamber geometry. The model predictions were compared to combustion rate measurements made in a single cylinder four valve passenger car engine. The data spanned a wide range of operating conditions, from an idle timing sweep, to part load EGR and mixture ratio sweeps, to a wide open throttle speed sweep. The results of the comparisons showed a generally good agreement. Some difficulties were encountered at idle, where cycle-to-cycle variability makes modeling difficult especially at early timing settings.
Technical Paper

Heat Transfer in a Cooled and an Insulated Diesel Engine

1989-02-01
890572
Detailed heat transfer measurements were made in the combustion chamber of a Cummins single cylinder NH-engine in two configurations: cooled metal and ceramic-coated. The first configuration served as the baseline for a study of the effects of insulation and wall temperature on heat transfer. The second configuration had several in-cylinder components coated with 1.25 mm (0.050″) layer of zirconia plasma spray -- in particular, piston top, head firedeck and valves. The engine was operated over a matrix of operating points at four engine speeds and several load levels at each speed. The heat flux was measured by thin film thermocouple probes. The data showed that increasing the wall temperature by insulation reduced the heat flux. This reduction was seen both in the peak heat flux value as well as in the time-averaged heat flux. These trends were seen at all of the engine operating conditions.
X