Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Integrated Proton Exchange Membrane Fuel Cell Vehicle Model

2004-03-08
2004-01-1474
The potential of fuel cells as an automotive power source is well recognized due to their high efficiency and zero tailpipe emissions. However, significant technical and economic hurdles need to be overcome in order to make this technology commercially viable. A proton-exchange membrane (PEM) fuel cell model has been developed to assess some of these technical issues. The fuel cell model can be operated in a standalone mode or it can be integrated with vehicle and fuel supply system models. A detailed thermal model of the fuel cell stack was used to identify significant design parameters that affect the performance of PEM fuel cell vehicles. The integrated vehicle model was used to explore the relative benefits of hybridization options.
Technical Paper

Integrated Engine/Vehicle Simulation and Control

1999-03-01
1999-01-0907
An increasing emphasis is being placed in the vehicle development process on transient operation of engines and vehicles, and of engine/vehicle integration, because of their importance to fuel economy and emissions. Simulations play a large role in this process, complementing the more usual test-oriented hardware development process. This has fueled the development and continued evolution of advanced engine and powertrain simulation tools which can be utilized for this purpose. This paper describes a new tool developed for applications to transient engine and powertrain design and optimization. It contains a detailed engine simulation, specifically focused on transient engine processes, which includes detailed models of engine breathing (with turbocharging), combustion, emissions and thermal warm-up of components. Further, it contains a powertrain and vehicle dynamic simulation.
X