Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Autoignition Correlation for Predicting Knock in Spark-Ignition Engines Fueled by Gasoline-Ethanol Blends

2020-04-14
2020-01-5042
Autoignition correlations are widely used to predict knock in internal combustion engines as opposed to detailed kinetics mechanisms involving hundreds of reactions due to computational cost. Several autoignition correlations exist in the literature for different fuels, and their functional form depends on the operating parameters like fuel type and temperature range, among other things. In the literature different types of correlations are proposed for gasoline fuel, but to the best of the authors’ knowledge none of these correlations can be used for gasoline-ethanol blends with varying levels of ethanol percentage and a wide range of equivalence ratios and temperatures. In this paper, a new empirical correlation is developed to predict the autoignition of gasoline-ethanol blends over a wide range of temperatures including Negative Temperature Coefficient (NTC) region.
Technical Paper

Modeling of Integrated Aftertreatment Systems: A Highly Configurable System Level Approach

2007-10-29
2007-01-4127
In order to meet the increasingly stringent emissions standard it is imperative that a two pronged approach is pursued for reduction of tailpipe emissions. In this regard emissions, and often the exhaust compositions, are needed to be controlled both at its source and then subsequently cleaned up at the exhaust system. In addition, an aftertreatment system often consists of an array of catalysts and its performance depends on the transient characteristics of the exhaust gas composition. To complicate the matter furthermore, relevant technologies are still evolving at a rapid pace. Consequently, an aftertreatment modeling approach should not only be system based but also offer a high level of configurability. Thus a system level approach that includes a model of an engine and vehicle may provide an efficient means to analyze system performance and examine relative effects of competing phenomena and technologies.
Technical Paper

A Lumped/1-D Combined Approach for ModelingWall-Flow Diesel Particulate Filters - Applicable to Integrated Engine/Aftertreatment Simulations

2007-10-29
2007-01-3971
In order to reduce the cost of exhaust aftertreatment development, OEMs are increasingly relying on simulation of catalysts, traps and associated control systems. In this regards, for example, considerable progresses have been made on modeling diesel particulate filters. The work described in this paper was sought to provide a valid diesel particulate filter (DPF) model for coupling with engine/vehicle models under the same toolbox. A comprehensive two-level modeling approach, including a lumped parameter model and a detailed 1-D 3-layer-kinetics model, has been proposed for modeling wall-flow diesel particulate filters. Both are capable of modeling virtually all aspects of filter performance in terms of deep-bed filtration, particulate matter loading and filter regeneration.
Technical Paper

Development of a Quasi-Steady Approach Based Simulation Tool for System Level Exhaust Aftertreatment Modeling

2008-04-14
2008-01-0866
This article describes a system level 1D simulation tool that has been constructed on the Quasi-steady (QS) method. By assuming that spatial changes are much greater than the temporal ones, rigorous 1D governing equations can be considerably simplified thus becoming less computationally demanding to solve and therefore suitable for control oriented modeling purposes. With the proposed tool exhaust pipe wall temperature profiles, including multiple-wall-layer configurations, are solved through a finite difference scheme. Momentum equation is included for predicting pressure losses due to frictions and geometric irregularity. Exhaust fluid properties (transport and thermodynamic) are evaluated according to NASA or JANAF polynomial thermal data basis. The proposed tool allows the consideration of an arbitrary number of chemical species and reactions in the entire system. A novel semi-automatic approach was developed to handle catalytic reaction kinetics intuitively.
Technical Paper

Modeling Aspects of Asymmetric Channel Configuration DPFs

2009-04-20
2009-01-1272
Recently there has been a substantial interest in adopting asymmetric geometry design inside wall-flow diesel particular filters (DPFs) with larger inlet channel width to accommodate soot/ash accumulation and to reduce back pressure and thus to increase filter operation life time. The current work is sought to develop a model based approach to investigate various aspects of this strategy and to compare results with conventional channel design. This paper describes assumptions and modeling methodologies used to evaluate the impact of asymmetries arising out of geometric design as well as due to ash deposition/accumulation on the overall pressure drop across the filter. Special attention is given to the challenges and strategies associated with flow and thermal solutions (during soot loading or regeneration) since transient ash accumulation causes a time varying reduction of effective wall-flow filtration length.
Technical Paper

Comparison of Measured and Predicted Combustion Characteristics of a Four-Valve S.I. Engine

1993-03-01
930613
An S.I. combustion model has been developed for application in phenomenological engine simulations. The model is based on a turbulent flame concept, linked to an in-cylinder flow and turbulence calculation. The flame front is assumed to spread from the spark plug and propagate through the cylinder, while interacting with the combustion chamber geometry. The model predictions were compared to combustion rate measurements made in a single cylinder four valve passenger car engine. The data spanned a wide range of operating conditions, from an idle timing sweep, to part load EGR and mixture ratio sweeps, to a wide open throttle speed sweep. The results of the comparisons showed a generally good agreement. Some difficulties were encountered at idle, where cycle-to-cycle variability makes modeling difficult especially at early timing settings.
Technical Paper

A Fuel injection Transducer and Controller

1983-10-31
831726
A fuel injection meter and controller has been developed which (1) measures the instantaneous injection rate and the total mass of fuel injected, and (2) controls the mass of fuel injected and injection pressure. The injection rate is computed from instantaneous measurements of the velocity of a pumping plunger and the pressure of fuel injection. A mathematical model of the meter and controller was developed to futher the understanding of various design and operating parameters on the injection rate. Compressibility of the fuel is accounted for. Good agreement is realized between numerically computed injection pressure and rate histories with corresponding experimental results.
Technical Paper

A Diesel Combustion Bomb: Proof of Concept

1984-10-01
841358
A combustion bomb has been developed which allows simulation of diesel combustion without the need to heat the bomb to high temperatures. Simulation of the compression stroke is achieved by burning a lean precharge composed of acetylene, oxygen and nitrogen. By controlling the initial partial pressures of these constituents it is possible to burn them to a state with an oxygen concentration, temperature and pressure representative of conditions in a diesel engine at the start of fuel injection. Diesel fuel injected into these gases autoignites and burns in a manner typical of combustion in diesel engines. This paper describes the design and operation of such a bomb. Experimental results are presented to illustrate its salient features. Particular attention is devoted to various means of obtaining optical access to the flow and the advantages offered over rapid compression machines or heated bombs.
Technical Paper

Experimental and Analytical Study of Heat Radiation in a Diesel Engine

1987-02-01
870571
An experimental study was conducted of the heat radiation in a single-cylinder direct injection 142 diesel engine. The engine was operated at speeds ranging from 1000 to 2100 RPM and a variety of loads. The radiation was measured using a specially designed fiber-optics probe operating on the two-color principle. The probe was located in the head at two different locations: in one location it faced the piston bowl and in the other it faced the piston crown. The data obtained from the probe was processed to deduce the apparent radiation temperature and soot volume concentration as a function of crank angle. The resultant profiles of radiation temperature and of the soot volume concentrations were compared with the predictions of a zonal heat radiation model imbedded in a detailed two-zone thermodynamic cycle code. The agreement between the model and the measurements was found to be good, both in trends and in magnitudes.
Technical Paper

Using an Optical Proximeter to Phase Cylinder Pressure to Crankshaft Position

1987-02-01
870478
The use of an optical proximeter to determine dynamic top center in a motored engine is demonstrated. Design criteria are formulated and a data reduction procedure is presented. The method is shown to have an accuracy of Δθ = ± 0.1°. Variations in dynamic top center with engine speed that can be attributed to structural flexing and finite bearing clearances are shown to be less than ± 0.05°. It is also shown that the compression ratio during gas exchange is slightly larger than during compression-expansion. Other methods of finding top center are discussed and contrasted with optical proximetry. In this context a rational means of examining pressure records is presented and shown to be accurate to within Δθ=±0.3°.
Technical Paper

Development of Real Time Catalyst Model for Engine & Powertrain Control Design

2009-04-20
2009-01-1273
Engines and vehicle systems are becoming increasing complex partly due to the incorporation of emission abatement components as well as control strategies that are technologically evolving and innovative to keep up with emissions requirements. This makes the testing and verification with actual prototypes prohibitively expensive and time-consuming. Consequently, there is an increasing reliance on Software-In-the-Loop (SIL) and Hardware-In-the-Loop (HIL) simulations for design evaluation of system concepts. This paper introduces a methodology in which detailed chemical kinetic models of catalytic converters are transformed into fast running models for control design, calibration or real time ECU validation. The proposed methodology is based on the use of a hybrid, structured, semi-automatic scheme for reducing high-fidelity models into fast running models.
Journal Article

A Zero-Dimensional Velocity-Composition-Frequency Probability Density Function Model for Compression-Ignition Engine Simulation

2020-04-14
2020-01-0659
Numerical simulation of in-cylinder processes can significantly reduce the development and refinement costs of engines. While it can be argued that higher fidelity models improve accuracy of prediction, it comes at the expense of high computational cost. In this respect, a 3D analysis of in-cylinder processes may not be feasible for evaluating large number of design and operating conditions. The situation can be more foreboding for transient simulations. In the current work a phenomenological combustion modeling approach is explored that can be implemented in a lower fidelity modeling framework and can approach the accuracy of higher dimensional models with significant reduction in computational cost. The proposed model uses transported probability density function (tPDF) method within a 0D framework to provide a computationally efficient solution while capturing the essential physics of in-cylinder combustion.
Technical Paper

A Quasi-Steady Diffusion-Based Model for Design and Analysis of Fuel Tank Evaporative Emissions

2019-04-02
2019-01-0947
In this paper, a fuel tank evaporation/condensation model was developed, which was suitable for calculation of evaporative emissions in a fuel tank. The model uses a diffusion-controlled mass transfer approach in the form of Fick's second law in order to calculate the average concentration of fuel vapor above the liquid level and its corresponding evaporation rate. The partial differential equation of transient species diffusion was solved using a separation of variables technique with the appropriate boundary conditions for a fuel tank. In order to simplify the solution, a quasi-steady assumption was utilized and justified. The fuel vapor pressure was modeled based on an American Petroleum Institute (API) procedure using either a distillation curve or a Reid Vapor Pressure (RVP) as an experimental input for the specific fuel used in the system.
X