Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of Active Steering/Wheel Torque Control at the Rollover Limit Maneuver

2004-05-04
2004-01-2097
It is well understood that driver's steering input strongly affects lateral vehicle dynamics and excessive steering command may result in unstable vehicle motion. In a certain driving condition, it is possible for a skilled driver to prevent vehicle rollover with better perceptive capability of judging conditions and responding faster with smooth compensatory actions. This paper investigates the possibility of using active steering and wheel torque control to assist drivers in avoiding vehicle rollovers in emergency situations. The effectiveness of steering control alone and combination of steering/wheel torque control in recovery from unstable vehicle roll condition was demonstrated through simulation of both low and high vehicle speeds.
Technical Paper

Using μ Feedforward for Vehicle Stability Enhancement

2000-05-01
2000-01-1634
Vehicle stability augmentation has been refined over many years, and currently there are commercial systems that control right/left braking and throttle to create vehicles that remain controlled when road conditions are very poor. These systems typically use yaw rate and lateral acceleration in their control philosophy. The tire/road friction coefficient, μ, has a significant role in vehicle longitudinal and lateral control, and there has been associated efforts to measure or estimate the road surface condition to provide additional information for the stability augmentation system. In this paper, a differential braking control strategy using yaw rate feedback, coupled with μ feedforward is introduced for a vehicle cornering on different μ roads. A nonlinear 4-wheel car model is developed. A desired yaw rate is calculated from the reference model based on the driver steering input.
X