Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Computational Modeling of Diesel NOx Trap Desulfation

2005-10-24
2005-01-3879
The major challenge in diesel NOx aftertreatment systems using NOx adsorbers is their susceptibility to sulfur poisoning. A new computational model has been developed for the thermal management of NOx adsorber desulfation and describes the exothermic reaction mechanisms on the catalyst surface in the diesel NOx trap. Sulfur, which is present in diesel fuel, adsorbs as sulfates and accumulates at the same adsorption sites as NOx, therefore inhibiting the ability of the catalyst to adsorb NOx. Typically, a high surface temperature above 650 °C is required to release sulfur rapidly from the catalyst [1]. Since the peak temperatures of light-duty diesel engine exhaust are usually below 400 °C, additional heat is required to remove the sulfur. This report describes a new mathematical model that employs Navier-Stokes equations coupled with species transportation equations and exothermic chemical reactions.
Technical Paper

Experimental Evaluation of Reformate-Assisted Diesel NOx Trap Desulfation

2005-10-24
2005-01-3878
NOx adsorber catalysts are leading candidates for improving NOx aftertreatment in diesel exhaust. The major challenge in the use of adsorbers that capture NOx in the form of nitrates is their susceptibility to sulfur poisoning. Sulfur, which is present in diesel fuel, adsorbs and accumulates as sulfate (SO4-2) at the same adsorption sites as NOx, and, since it is more stable than nitrates, inhibits the ability of the catalyst to adsorb NOx. It is found that high temperature (> about 650 °C) in the presence of a reducing gas is required to release sulfur rapidly from the catalyst. Since the peak temperatures of diesel engine exhaust are below 400 °C, additional heat is required to remove the sulfur. This work describes a reformate-assisted “sulfur purge” method, which employs heat generated inside the NOx trap catalyst by exothermic chemical reactions between the oxygen in diesel exhaust and injected reformate (H2 + CO).
X