Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Technical Paper

Assessment of Various Environmental Thermal Loads on Passenger Compartment Soak and Cool-down Analyses

2009-04-20
2009-01-1148
Energy efficient HVAC system is becoming increasingly important as the higher Corporate Average Fuel Economy (CAFE) standards are required for future vehicle products. The present study is a preliminary investigation which addresses an energy efficient HVAC system without compromising occupant thermal comfort. The vehicle cabin is subjected to various thermal environments. Thermal analysis of a passenger compartment involves not only the geometric complexity but also strong interactions between airflows and three modes of heat transfer, namely, heat conduction, convection, and thermal radiation. The present full 3-D CFD analysis takes into account the geometrical configuration of the passenger compartment including glazing surfaces and pertinent physical and thermal properties of the enclosure with particular emphasis on glass properties. Many of the design parameters related with the climate control system are dependent on each other and the relationship among them is quite complex..
Technical Paper

Computational Modeling of Diesel NOx Trap Desulfation

2005-10-24
2005-01-3879
The major challenge in diesel NOx aftertreatment systems using NOx adsorbers is their susceptibility to sulfur poisoning. A new computational model has been developed for the thermal management of NOx adsorber desulfation and describes the exothermic reaction mechanisms on the catalyst surface in the diesel NOx trap. Sulfur, which is present in diesel fuel, adsorbs as sulfates and accumulates at the same adsorption sites as NOx, therefore inhibiting the ability of the catalyst to adsorb NOx. Typically, a high surface temperature above 650 °C is required to release sulfur rapidly from the catalyst [1]. Since the peak temperatures of light-duty diesel engine exhaust are usually below 400 °C, additional heat is required to remove the sulfur. This report describes a new mathematical model that employs Navier-Stokes equations coupled with species transportation equations and exothermic chemical reactions.
Technical Paper

Validation of 3-D Passenger Compartment Hot Soak and Cool-Down Analysis for Virtual Thermal Comfort Engineering

2002-03-04
2002-01-1304
Simulation of passenger compartment climatic conditions is becoming increasingly important as a complement to wind tunnel and field testing to help achieve improved thermal comfort while reducing vehicle development time and cost. Thermal analysis of a passenger compartment involves not only geometric complexity but also strong interactions between airflow and three modes of heat transfer, namely, heat conduction, convection, and thermal radiation. The present full 3-D CFD analysis takes into account the geometrical configuration of the passenger compartment including glazing surfaces and pertinent physical and thermal properties of the enclosure with particular emphasis on glass properties. This CFD analysis is coupled with a thermal comfort model in the Virtual Thermal Comfort Engineering (VTCE) Process that was described in [1].
X