Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Technical Paper

Aerodynamic Shape Improvement Based on Surface Pressure Gradients in the Stream-wise and the Transverse Directions

2010-04-12
2010-01-0511
Aerodynamic forces are the result of various complex viscous flow phenomena such as three-dimensional turbulent boundary layer on the body surfaces, longitudinal vortices induced by three-dimensional boundary layer separation, and high turbulence caused by flow separations. Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics (particularly for low drag shapes). The present study was an attempt to provide insights for better understanding of the complex three-dimensional flow field around a vehicle by observing the limiting surface streamlines and the surface pressure gradients in the stream-wise and the transverse directions. The main objective of this work is to provide a comprehensive diagnostic analysis of the basic flow features in order to learn more about the flow separations in three-dimensions.
Technical Paper

A Model for Relating a Thermal Comfort Scale to EHT Comfort Index

2004-03-08
2004-01-0919
Delphi Harrison Thermal System's comfort model can be used to predict the local thermal comfort level of an occupant in the highly non-uniform thermal environment of a vehicle cabin. This model is based on the concept of Equivalent Homogeneous Temperature (EHT) to assess the local comfort of 16 body segments as a function of air temperature, surrounding surface temperatures, air velocity, humidity, direct solar flux, as well as the level of activity and clothing type of each individual. Although EHT has been accepted by some European automotive industries, OEMs in North America have their own comfort scales. In the present study, we developed a model to correlate our EHT scale to an OEM's comfort scale. The current comfort model based on EHT produced excellent agreements with human subject data based on an OEM's comfort scale for both summer and winter rides.
Technical Paper

Ultrasonic Air Temperature Sensing for Automatic Climate Control - Vehicle Test

2004-03-08
2004-01-1375
An ultrasonic air temperature sensor, intended to help improve automatic climate control (ACC), has been demonstrated in a vehicle. Ideally, ACC should be based on inputs correlated with thermal comfort. Current ACC systems do not measure the air temperature best correlated to thermal comfort - at breath level in front of an occupant. This limits the thermal comfort that ACC can provide under transient conditions. An ultrasonic sensor measures the bulk air temperature, is transparent to the driver, and can use commercially available components. In a proof-of-concept test, we monitored the thermal transients in a vehicle during cool-down after a hot soak and also during warm-up after a cold soak. The ultrasonic path was along the roof console. The ultrasonic temperature always agreed to ±1 °C with the air temperature measured by a thermocouple at the midpoint of the ultrasonic path.
Technical Paper

Engine Oil Viscometer Based on Oil Pressure Sensor

2006-04-03
2006-01-0701
A methodology for measuring oil viscosity in an internal combustion engine has been developed that is based on measured values of oil pressure and oil temperature at a relatively low engine speed near idle. Engine oil pressure results from the resistance of the oil to flow under the pumping action of the oil pump. The resistance to flow, in turn, is a function of both the viscosity of the oil and the flow rate. At a constant oil flow rate, a higher oil viscosity will result in a higher oil pressure. Oil viscosity is an important factor in determining the ability of the oil to provide effective lubrication and, for example, can be used as an indicator of the need to change the oil. This report describes the operational principles of the methodology for determining engine oil viscosity and a proof of concept based on a simple vehicle test.
Technical Paper

Computational Modeling of Diesel NOx Trap Desulfation

2005-10-24
2005-01-3879
The major challenge in diesel NOx aftertreatment systems using NOx adsorbers is their susceptibility to sulfur poisoning. A new computational model has been developed for the thermal management of NOx adsorber desulfation and describes the exothermic reaction mechanisms on the catalyst surface in the diesel NOx trap. Sulfur, which is present in diesel fuel, adsorbs as sulfates and accumulates at the same adsorption sites as NOx, therefore inhibiting the ability of the catalyst to adsorb NOx. Typically, a high surface temperature above 650 °C is required to release sulfur rapidly from the catalyst [1]. Since the peak temperatures of light-duty diesel engine exhaust are usually below 400 °C, additional heat is required to remove the sulfur. This report describes a new mathematical model that employs Navier-Stokes equations coupled with species transportation equations and exothermic chemical reactions.
Technical Paper

Experimental Evaluation of Reformate-Assisted Diesel NOx Trap Desulfation

2005-10-24
2005-01-3878
NOx adsorber catalysts are leading candidates for improving NOx aftertreatment in diesel exhaust. The major challenge in the use of adsorbers that capture NOx in the form of nitrates is their susceptibility to sulfur poisoning. Sulfur, which is present in diesel fuel, adsorbs and accumulates as sulfate (SO4-2) at the same adsorption sites as NOx, and, since it is more stable than nitrates, inhibits the ability of the catalyst to adsorb NOx. It is found that high temperature (> about 650 °C) in the presence of a reducing gas is required to release sulfur rapidly from the catalyst. Since the peak temperatures of diesel engine exhaust are below 400 °C, additional heat is required to remove the sulfur. This work describes a reformate-assisted “sulfur purge” method, which employs heat generated inside the NOx trap catalyst by exothermic chemical reactions between the oxygen in diesel exhaust and injected reformate (H2 + CO).
X