Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Extension of Lean Burn Range by Intake Valve Offset

2013-10-15
2013-32-9032
Using a 109.2 cm3, four-stroke, single-cylinder, two-valve gasoline engine, improvement of fuel economy by extension of lean burn range has been attempted with invented way to intensify tumble flow from a simple mechanical arrangement. With a part of the intake valve was jutted out beyond the perimeter of the cylinder bore, the masking effects from the valve recess on top of the cylinder sleeve created a strong tumble flow, which enabled lean burn at an air fuel ratio leaner than the conventional design by two points. The motorcycle equipped with this engine attained better fuel economy by 5.7% to the base model when measured in Indian Driving Cycle (IDC). The outward-laid intake valve also increased the clearance from the exhaust valve, which enabled use of a large-diameter intake valve to minimize the reduction of maximum power.
Journal Article

Establishment of Fuel Economy Estimation Method Focused on Transmission Efficiency of Rubber Belt Type CVT

2016-11-08
2016-32-0036
A simulation tool has been developed that can be used to estimate a fuel economy while driving in a mode test of a motorcycle equipped with a continuously variable transmission (CVT) at an early stage of development. For a precise estimation of a mode fuel economy, it is necessary to accurately estimate the CVT ratio, the engine speed, and the crankshaft torque during driving in a mode. To achieve this, this study has generalized the transmission efficiency of a CVT system. This study has also derived developed balance equations that can take into account the transmission efficiency of CVT and the slippage that occurs when the centrifugal clutch is about to be engaged. In the proposed method, the pulley ratio of CVT, the engine speed, and the torque at the crankshaft were obtained first by solving the developed balance equations at discrete times during driving in a mode.
X