Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

New Standard for Four-stroke Diesel Engine Oils: JASO DH-1

2001-05-07
2001-01-1970
This paper reviews the development of a new standard for four-stroke diesel engine oils, JASO DH-1 (JASO M355: 2000). This standard was introduced to the market on April 1, 2001. It prescribes the minimum performance for engine oils conforming to four-stroke diesel engines manufactured by Japanese OEMs. This standard is composed of four engine tests and seven bench tests. The engine tests include a piston detergency test (JASO M336: 1998), valve train wear test (JASO M354: 1999), soot dispersancy test (ASTM D 5967-99) and high temperature antioxidation test (ASTM D 5533-97a). The piston detergency test and the valve train wear test were developed in Japan. The bench tests measure hot surface deposits, anti-forming, volatility, anti-corrosion, shear-stability, total base number, and seal compatibility.
Technical Paper

Impact of Oil-derived Sulfur and Phosphorus on Diesel NOx Storage Reduction Catalyst - JCAP II Oil WG Report

2006-10-16
2006-01-3312
Emission regulations for diesel-powered vehicles have been gradually tightening. Installation of after-treatment devices such as diesel particulate filters (DPF), NOx storage reduction (NSR) catalysts, and so on is indispensable to satisfy rigorous limits of particulate matter (PM) and nitrogen oxides (NOx). Japan Clean Air Program II Oil Working Group (JCAPII Oil WG) has been investigating the effect of engine oil on advanced diesel after-treatment devices. First of all, we researched the impact of oil-derived ash on continuous regeneration-type diesel particulate filter (CR-DPF), and already reported that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF [1]. In this paper, impact of oil-derived sulfur and phosphorus on NSR catalyst was investigated using a 4L direct injection common-rail diesel engine with turbo-intercooler. This engine equipped with NSR catalyst meets the Japanese new short-term emission regulations.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
X