Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study of Piston Pin Noise of Semi-Floating System

2012-04-16
2012-01-0889
This paper summarizes the piston pin noise mechanism and show the way to reduce noise level of semi-floating system. A mechanism of piston pin noise of semi-floating system was clarified by measurement of piston and piston pin behavior and visualization of engine oil mist around piston and piston pin. Piston and piston pin behavior was measured by accelerometer and eddy current type gap sensor with linkage system at the actual engine running condition. Engine oil behavior was visualized and measured its flow vector by Particle Tracking Velocimetry (PTV). For PTV, engine oil mist particle image was taken by high speed camera with fiber scope attached to linkage system. From themeasurement, it was cleared that engine oil doesn't reach to piston hole from undersurface of piston land and come rushing out from piston broach via groove. The result shows that lacking of engine oil between piston and piston pin makes noise larger.
Technical Paper

Study on Homogeneous Lean Charge Spark Ignition Combustion

2013-10-14
2013-01-2562
In practical lean burn engines used to date, the use of a stratified air-fuel configuration, with a comparatively rich mixture in the vicinity of the spark plugs, has resulted in the stable combustion of an overall lean mixture. However, because a comparatively rich mixture is burned during the first half of combustion, NOx emissions are not reduced sufficiently. This research focused on a form of lean burn with homogeneous premixture that would be able to balance low NOx emissions with combustion controllability. It is widely known that homogeneous lean premixed gas has poor flame propagation characteristics. To determine the dominant cause of this, this study investigated the combustion properties of a single-cylinder engine while changing the compression ratio and intake temperature. As a result, the primary cause of combustion fluctuation, the abnormal cycle has a low TDC temperature compared to that of other cycles.
Technical Paper

A Study on the Mechanism of Backfire in External Mixture Formation Hydrogen Engines -About Backfire Occurred by Cause of the Spark Plug-

1997-05-01
971704
It is a well-known fact that the exhaust emission characteristics of hydrogen fueled engines are extremely good. The external mixture formation - a hydrogen fuel supply method - has the merit of practically zero NOx emission level in the lean mixture range with the excess air ratio λ set at 2.0 or greater as well as the merits of simple mechanism and easy operation. However, the practical use of such engines has been impeded partly due to the occurrence of backfire where the excess air ratio λ is 2 to 3. In order to allow the practical use of the hydrogen fueled engines with external mixture formation, it is vital to determine the causes of backfire and to establish proper countermeasures. It is found through a recent study conducted on the mechanism of backfire that the abnormal electric discharge in the intake stroke is one of the causes of backfire.
X