Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection

1992-02-01
920692
Two dimensional flame temperature distributions in D.I. diesel engine with high pressure fuel injection were measured by the image analysis of high speed photographs based on two color method. Effects of injection pressure and nozzle hole diameter on flame temperature distribution were examined. The flame temperature in the case of high pressure injection is higher than that in low injection pressure. The higher flame temperature in high pressure injection results from the rapid compression of burned gases. The KL value which is an index of soot density in the combustion chamber decreases as injection pressure increases. The higher oxidation rate of soot at the later period of combustion may contribute to a soot reduction in the case of high pressure injection.
Technical Paper

Combustion Exhaust Emissions of the Spark-Assisted Methanol Diesel Engine

1986-09-01
861165
Ignition and combustion of methanol in a spark-assisted methanol diesel engine were studied for the purpose of developing such an engine that is practical for actual vehicles. It became clear through investigations on combustion of methanol in a spark-assisted methanol diesel engine that methanol combustion proceeds mainly by flame propagation. Based on this finding, effects of such parameters as the injection direction, ignition position, ignition energy, compression ratio, injection timing and ignition timing were studied to obtain optimal conditions for methanol combustion. It was found through such studies that it is effective to form the mixture upstream of the spark, plug relative to the swirling direction and increase the inductive component of the ignition energy to achieve a high ignition stability.
X