Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Combined Effects of EGR and Supercharging on Diesel Combustion and Emissions

1993-03-01
930601
An experimental study has been made of a single cylinder, direct-injection diesel engine having a re-entrant combustion chamber designed to enhance combustion so as to reduce exhaust emissions. Special emphasis has been placed on controlling the inert gas concentration in the localized fuel-air mixture to lower combustion gas temperatures, thereby reduce exhaust NOx emission. For this specific purpose, an exhaust gas recirculation (EGR) system, which has been widely used in gasoline engines, was applied to the DI diesel engine to control the intake inert gas concentration. In addition, supercharging and increasing fuel injection pressure prevent the deterioration of smoke and unburned hydrocarbons and improve fuel economy, as well.
Technical Paper

Simulating Exhaust Emissions Characteristics and Their Improvements in a Glow-Assisted DI Methanol Engine Using Combustion Models Combined with Detailed Kinetics

1997-05-01
971598
An experimental and numerical study has been conducted on the emission and reduction of HCHO (formaldehyde) and other pollutants formed in the cylinder of a direct-injection diesel engine fueled by methanol. Engine tests were performed under a variety of intake conditions including throttling, heating, and EGR (exhaust gas recirculation) for the purpose of improving these emissions by changing gas compositions and combustion temperatures in the cylinder. Moreover, a detailed kinetics model was developed and applied to methanol combustion to investigate HCHO formation and the reduction mechanism influenced by associated elementary reactions and in-cylinder mixing.
Technical Paper

Intercooling Effects of Methanol on Turbocharged Diesel Engine Performance and Exhaust Emissions

1984-09-01
841160
From the viewpoint of utilizing methanol fuel in an automotive turbocharged direct-injection diesel engine, an intercooling system supplying liquid methanol has been devised and its effects on engine performance and exhaust gas emissions have been investigated. With an electronically controlled injector in this system, methanol as a supplementary fuel to diesel fuel can be injected into the intake pipe in order to intercool a hot air charge compressed by the turbocharger. It has been confirmed that especially at heavy load conditions, methanol-intercooling can yield a higher thermal efficiency, and lower NOx and smoke emissions simultaneously, compared with three other cases without using methanol: natural aspiration and the cases with and without an ordinary intercooler. However, methanol fueling must be avoided at lower loads since sacrifices in efficiency and hydrocarbon emissions are inevitably involved.
Technical Paper

A Study on Process of Direct Injection Stratified Charge Combustion in a Constant-Volume Vessel

1989-11-01
891223
A numerical simulation model has been developed to predict the direct injection stratified charge combustion in a constant- volume vessel. Important factors such as local fuel concentration, their fluctuation and turbulent flow characteristics were measured throughout the vessel as function of time. These data were utilized to estimate the buring rate composed of the turbulent fuel-air mixing rate and chemical reaction rate. The model can predict the combustion pressures and heat release rates measured for different ignition timings and spark location.
Technical Paper

A Simulation Method for Crankshaft Torsional Vibration by Considering Dynamic Characteristics of Rubber Dampers

1989-05-01
891172
This paper refers to a numerical calculation method, in which the transition matrix method is employed. The method estimates torsional vibration amplitude of a crankshaft with a rubber damper by taking the dynamic characteristics of the rubber part into consideration. Firstly, the rubber part is replaced with a three-elemental Maxwell model, which is determined by the results of static tests, such as stress relaxation test, creep test and static torsional test. The basic data used for the determination of the element values on the Maxwell model are obtained by these tests. Secondly, the vibration system of a crankshaft with a rubber damper is replaced with a linear lumped model, in which the torsional stiffness and damping coefficient of the damper rubber part are decided by using the element values of the Maxwell model.
Technical Paper

Effects of Combustion Chamber Geometry on Diesel Combustion

1986-09-01
861186
A study has been made of an automotive direct-injection diesel engine in order to identify the effects of the combustion chamber geometry on combustion, with special emphasis focused on a re-entrant combustion chamber. Conventional combustion chambers and a re-entrant one were compared in terms of the combustion process, engine performance and NOx and smoke emissions. Heat transfer calculations and heat release analyses show that the re-entrant chamber tends to reduce ignition lag due to the higher temperatures of the wall on which injected fuel impinges. Analyses of turbulent flow characteristics in each chamber indicate that the re-entrant chamber enhances combustion because of the higher in-cylinder velocity accompanied by increased turbulence. Further, analyses of in-cylinder gas samples show lower soot levels in the re-entrant chamber. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by retarding the fuel injection timing.
Technical Paper

Dynamic Characteristics of Torsional Rubber Dampers and Their Optimum Tuning

1987-02-01
870580
Vibration has been the most objectable problem that inevitably occurs in high speed multi-cylinder diesel engines. The torsional vibration appearing at the crankshaft of the engine is the major source of the engine vibration. A torsional damper, being attached at the end of the crankshaft, has been widely used to reduce the torsional vibration. For this purpose, various kinds of damper as examplified by a double-mass type and a viscous-rubber type have been subject to many investigations during these twenty years. However, less attention has been paid on dynamic characteristics of a shear-type single mass rubber damper in spite of its potential. Thus, the purpose of this study has been directed to establish the concept for designing a best tuned torsional rubber damper. In this work, rubber geometry is considered as one of the most essential factors influencing on dynamic characteristics of the rubber damper.
X