Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Combustion and Exhaust Emissions in a Direct-injection Diesel Engine Dual-Fueled with Natural Gas

1995-02-01
950465
Dual-fuel operation of a direct-injection diesel engine with natural gas fuel can yield a high thermal efficiency almost comparable to the diesel operation at higher loads. The dual-fuel operation, however, at lower loads inevitably suffers from lower thermal efficiency and higher unburned fuel. To improve this problem, engine tests were carried out on a variety of engine parameters including diesel fuel injection timing advance, intake throttling and hot and cooled exhaust gas recirculation (EGR). It was found that diesel injection timing advance gave little improvement in thermal efficiency and increased NOx. Intake throttling promoted better combustion and shortened its duration with a consequent improvement in efficiency at higher natural gas fractions. Hot EGR raised thermal efficiency, reduced smoke levels, and maintained low NOx levels. Cooled EGR reduced NOx emissions but lowered thermal efficiency.
Technical Paper

Intercooling Effects of Methanol on Turbocharged Diesel Engine Performance and Exhaust Emissions

1984-09-01
841160
From the viewpoint of utilizing methanol fuel in an automotive turbocharged direct-injection diesel engine, an intercooling system supplying liquid methanol has been devised and its effects on engine performance and exhaust gas emissions have been investigated. With an electronically controlled injector in this system, methanol as a supplementary fuel to diesel fuel can be injected into the intake pipe in order to intercool a hot air charge compressed by the turbocharger. It has been confirmed that especially at heavy load conditions, methanol-intercooling can yield a higher thermal efficiency, and lower NOx and smoke emissions simultaneously, compared with three other cases without using methanol: natural aspiration and the cases with and without an ordinary intercooler. However, methanol fueling must be avoided at lower loads since sacrifices in efficiency and hydrocarbon emissions are inevitably involved.
X