Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Improvement of Performance and Reduction of Exhaust Emissions by Pilot-Fuel-Injection Control in a Lean-Burning Natural-Gas Dual-Fuel Engine

2011-08-30
2011-01-1963
The purpose of this study is to determine a pilot injection control strategy for the improvement of dual-fuel combustion with a lean natural gas/air mixture. Experiments were performed using a single cylinder test engine equipped with a common-rail injection system. The injection pressure, timing and quantity were varied at a fixed overall equivalence ratio of 0.5. The results of single-stage-injection experiments show that middle injection timings (−20 to −10 degATDC) produce low emissions of unburned species, because the pilot-fuel vapor spreads into the natural-gas lean mixture and raises the effective equivalence ratio, which leads to fast flame propagation. Early injection (−35degATDC) is advantageous for low NOx emission; however, increased emissions of unburned species are barriers.
Technical Paper

Relations among NOx, Pressure Rise Rate, HC and CO in LTC Operation of a Diesel Engine

2009-04-20
2009-01-1443
This study aims to determine strategies for improving the relations between the pressure rise rate and emissions of nitrogen oxide (NOx), hydrocarbons (HC), and carbon monoxide (CO) in low temperature combustion (LTC) operation of a diesel engine. For this purpose, an analysis was conducted on data from experiments carried out using a single-cylinder direct-injection diesel engine with variation in the injection quantity, injection timing, exhaust-gas recirculation (EGR) rate, injection pressure, injection nozzle specification and combustion chamber geometry. The results reveal that the pressure rise rate and NOx exhibit similar tendencies when varying injection timing and EGR rate, which is opposite to CO and total HC (THC) emissions, regardless of injection quantity. When the injection quantity is increased, smoke emission becomes problematic in the selection of the injection timing.
Technical Paper

Effects of Piston Bowl Diameter on Combustion Characteristics of a Natural gas/Diesel Dual Fuel Engine

2019-12-19
2019-01-2173
Natural gas/diesel dual fuel engines have potential for a high thermal efficiency and low NOx emissions. However, they have the disadvantages of high unburned species emissions and lower thermal efficiencies at low loads (at low equivalence ratio). A way to solve this problem is to properly distribute the pilot fuel vapor in a natural-gas premixture. The combustion chamber geometry affects the combustion process since it influences the distribution of the pilot fuel vapor. This study investigates the influence of injection conditions and the piston bowl geometry on the performance and emissions of a dual fuel engine. Experiments were carried out using two pistons with different bowl diameters, 52 mm and 58 mm, at single-and two-stage diesel-fuel injection. The results show that the larger bowl provides lower hydrocarbon emissions at a lower equivalence ratio in the case of single-stage injection.
X