Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Three-Dimensional Computations of Combustion in Premixed-Charge and Direct-Injected Two-Stroke Engines

1992-02-01
920425
Combustion and flow were calculated in a spark-ignited two-stroke crankcase-scavenged engine using a laminar and turbulent characteristic-time combustion submodel in the three-dimensional KIVA code. Both premixed-charge and fuel-injected cases were examined. A multi-cylinder engine simulation program was used to specify initial and boundary conditions for the computation of the scavenging process. A sensitivity study was conducted using the premixed-charge engine data. The influence of different port boundary conditions on the scavenging process was examined. At high delivery ratios, the results were insensitive to variations in the scavenging flow or residual fraction details. In this case, good agreement was obtained with the experimental data using an existing combustion submodel, previously validated in a four-stroke engine study.
Technical Paper

Ignition and Combustion Simulations of Spray-Guided SIDI Engine using Arrhenius Combustion with Spark-Energy Deposition Model

2012-04-16
2012-01-0147
An Arrhenius combustion model (chemically controlled model) with a spark-energy deposition model having a moving spherical ignition source in the Converge CFD code is validated with a single-cylinder spray-guided SIDI engine at idle-like lean-burn operating conditions with both single- and double-pulse fuel injection. It was found that a fine mesh is required for accurate solving of "laminar-flame" like reaction front propagation. A reduced chemistry mechanism for iso-octane is used as gasoline surrogate. The effects of spark advance were studied by the simulation and experiment. The results show that this modeling approach can provide reasonable predictions for the spray-guided SIDI engine with single- and double-pulse injections.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

Particle Image Velocimetry Measurements in a High-Swirl Engine Used for Evaluation of Computational Fluid Dynamics Calculations

1995-10-01
952381
Two-dimensional in-cylinder velocity distributions measured with Particle Image Velocimetry were compared with computed results from Computational Fluid Dynamics codes. A high-swirl, two-valve, four-stroke transparent-combustion-chamber research engine was used. Comparisons were made of mean-flow velocity distributions, swirl-ratio evolution during the intake and compression strokes, and turbulence distributions at top-dead-center compression. This comparison with the measured flows led to more accurate calculations by identifying code improvements including swirl in the residual gas, modeling of the gas exchange during the valve overlap, and improved numerical accuracy.
Technical Paper

Evaluation of a Phenomenological Spray-Combustion Model for Two Open-Chamber Diesel Engines

1987-11-01
872057
The predictive capability of a phenomenological spray-combustion model was evaluated for diesel engine performance, combustion, and emissions. The data used for comparisons with the predictions resulted from tests on two single-cylinder research-type open-chamber diesel engines -- a 2.0-L per cylinder heavy-duty engine and a 0.52-L per cylinder light-duty engine. The data covered wide ranges of speed and overall air-fuel ratio. Such global performance quantities as indicated mean effective pressure and indicated thermal efficiency predicted by the model agreed with experimental results from both engines within 5%. Pressure-time and heat-release rate predictions agreed within 5-15%. However, further improvements are needed before the model can be used reliably for emissions predictions. Specifically, predictions of nitric oxide (NO) and non-volatile particulate (soot) were in poor agreement with the measurements, especially for the light-duty engine.
X