Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Particulate Characterization of Biodiesel Fuelled Compression Ignition Engine

2009-12-13
2009-28-0018
Environmental concerns have increased significantly world over in the past decade. Regulatory agencies are becoming increasingly concerned with particulate emissions as the health and environmental effects are getting understood better due to rapid development in instrumentation. Biodiesel is one of the most promising alternative diesel fuels, which is getting global acceptability among the automotive/ engine manufactures as well as users due to numerous benefits it offers over the conventional diesel. While much of literature is available on particulate emitted by diesel fuelled engine, little is known by particulate emissions from biodiesel fuelled compression ignition (CI) engine. This study concentrates on the characterization of particulate emissions from mineral diesel vis-à-vis biodiesel (B100) and its optimum blend (20%, B20) with mineral diesel.
Technical Paper

An Experimental Investigation on Spray Characteristics of Waste Cooking Oil, Jatropha, and Karanja Biodiesels in a Constant Volume Combustion Chamber

2016-10-17
2016-01-2263
In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

Oxidation Stability of Biodiesel Produced from Non-Edible Oils of African Origin

2011-04-12
2011-01-1202
Mono alkyl esters of long-chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, also known as biodiesel are well positioned to replace mineral diesel. The outstanding technical problem with biodiesel is that it is more susceptible to oxidation owing to its exposure to oxygen present in the air and high temperature. This happens mainly due to the presence of varying numbers of double bonds in the free fatty acid molecules. The chemical reactivity of esters can therefore be divided into oxidative and thermal instability, which can be determined by the amount and configuration of the olefinic unsaturation in the fatty acid chains. Many of the plant-derived fatty oils contain polyunsaturated fatty acids that are more prone to oxidation. Increasing production of biodiesel from vegetable oils (edible) places strain on food production, availability and price and leads to food versus fuel conflict.
Technical Paper

Comparative Study of PM Mass and Chemical Composition from Diesel and Biodiesel Fuelled CRDI SUV Engine

2012-01-09
2012-28-0012
Adverse health effects of particulate matter (PM) originating from diesel engine exhaust are largely attributed to the complex chemical composition of the exhaust species. This study was set out to characterize particulate emissions from a Euro-III-compliant modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at rated engine speed (1800 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. This study is mainly divided into two main sections, first one includes the gravimetric analysis in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICPOES). The second section includes real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs).
X