Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method

2012-04-16
2012-01-0043
In an attempt to predict the responses of side crash pressure sensors, the Corpuscular Particle Method (CPM) was adopted and enhanced in this research. Acceleration-based crash sensors have traditionally been used extensively in automotive industry to determine the air bag firing time in the event of a vehicle accident. The prediction of crash pulses obtained from the acceleration-based crash sensors by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crash zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side impact applications.
Journal Article

Side Crash Pressure Sensor Prediction: An ALE Approach

2012-04-16
2012-01-0046
An Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors in an attempt to assist pressure sensor algorithm development by using computer simulations. Acceleration-based crash sensors have traditionally been used to deploy restraint devises (e.g., airbags, air curtains, and seat belts) in vehicle crashes. The crash pulses recorded by acceleration-based crash sensors usually exhibit high frequency and noisy responses depending on the vehicle's structural design. As a result, it is very challenging to predict the responses of acceleration-based crash sensors by using computer simulations, especially those installed in crush zones. Therefore, the sensor algorithm developments for acceleration-based sensors are mostly based on physical testing.
Journal Article

Side Crash Pressure Sensor Prediction for Unitized Vehicles: An ALE Approach

2013-04-08
2013-01-0657
With a goal to help develop pressure sensor calibration and deployment algorithms using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this research to predict the responses of side crash pressure sensors for unitized vehicles. For occupant protection, acceleration-based crash sensors have been used in the automotive industry to deploy restraint devices when vehicle crashes occur. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. Instead of using acceleration (or deceleration) in the acceleration-based crash sensors, the pressure sensors utilize pressure change in a door structure to determine the deployment of restraint devices. The crash pulses recorded by the acceleration-based crash sensors usually exhibit high frequency and noisy responses.
Journal Article

Side Crash Pressure Sensor Prediction for Body-on-Frame Vehicles: An ALE Approach

2013-04-08
2013-01-0666
In an attempt to assist pressure sensor algorithm and calibration development using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors for body-on-frame vehicles. Acceleration based, also called G-based, crash sensors have been used extensively to deploy restraint devices, such as airbags, curtain airbags, seatbelt pre-tensioners, and inflatable seatbelts, in vehicle crashes. With advancements in crash sensor technologies, pressure sensors that measure pressure changes in vehicle side doors have been developed recently and their applications in vehicle crash safety are increasing. The pressure sensors are able to detect and record the dynamic pressure change when the volume of a vehicle door changes as a result of a crash.
Technical Paper

Approaches to Modeling the Dynamic Interaction for an Automotive Seat and Occupant System

2007-04-16
2007-01-0988
There are a wide variety of approaches to model the automotive seat and occupant interaction. This paper traces the studies conducted for simulating the occupant to seat interaction in frontal and/or rear crash events. Starting with an initial MADYMO model, a MADYMO-LS/DYNA coupled model was developed. Subsequently, a full Finite Element Analysis model using LS/DYNA was studied. The main objective of the studies was to improve the accuracy and efficiency of CAE models for predicting the dummy kinematics and structural deformations at the restraint attachment locations in laboratory tests. The occupant and seat interaction was identified as one of the important factors that needed to be accurately simulated. Quasi-static and dynamic component tests were conducted to obtain the foam properties that were input into the model. Foam specimens and the test setup are discussed. Different material models in LS/DYNA were evaluated for simulating automotive seat foam.
Technical Paper

Impact Testing of Bushings for Crashworthiness Simulation

2006-04-03
2006-01-0317
The dynamic response of a front lower control arm (LCA) is very important in crash safety. In the event of a crash, the deformation of the LCA affects the frame rail's ability to crush and absorb energy on impact. Therefore, the deformation and rupture of the LCA during a crash may indirectly influence the deceleration pulse which is needed for safety sensor calibration of airbag deployment [1]. Depending on compliance, bushings have a significant effect on the deformation and rupture of the LCA. During a high speed impact test, the bushings allow the LCA to rotate at the joints or points where the LCA connects to the frame. The development of new LCA and bushing designs, constructed of different materials and geometries, require a standard test to measure their performance. The overall goal of this study was to develop a standardized procedure to test the stiffness, deformation, and strength of LCA bushings.
X