Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Automotive NVH Research Instrumentation and Infrastructure at UC-SDRL

2003-05-05
2003-01-1689
This paper is intended to describe some of the advances in automotive NVH research and applications based on recent developments in the Structural Dynamics Research Laboratory (SDRL) at the University of Cincinnati. State-of-the-art vibro-acoustic research capabilities and infrastructure ranging from advanced vibration modal analysis and spectral techniques for linear and nonlinear automotive systems to computational tools for structure-borne acoustic noise generation, transmission and synthesis problems are discussed. These systems have been devised with the intent of integrating a versatile set of experimental, computational and analytical approaches in order to be able to investigate a variety of crucial automotive NVH concerns. The materials will be grouped into three separate but closely related sets of applications consisting of (i) powertrain noise and vibration control, (ii) analysis and control vehicle system dynamics, and (iii) NVH and sound quality.
Technical Paper

Hybrid Experimental-Analytical Simulation of Structure-Borne Noise and Vibration Problems In Automotive Systems

1992-02-01
920408
The design of automotive components for low structure-borne interior noise and vibration requires the ability to reliably simulate total vehicle system response over a wide operating frequency range. This implies that the car body, its interior acoustic cavity, and critical structural components must be included in this overall dynamic model. Unfortunately, most noise and vibration problems occur in the 200-1000 Hz frequency range where existing finite element and experimental modal methods have limited applicability. This is due to the high modal density, high damping levels, and sensitivity to fine geometric detail. Moreover, it is highly doubtful that these methods will ever be practical tools for the study of the total body dynamics over the frequency range of 200-1000Hz. In this paper, a practical hybrid experimental-analytical approach is proposed in response to the need to simulate high frequencies structure-borne noise and vibration in automotive systems.
Technical Paper

Control of Powertrain Noise Using a Frequency Domain Filtered-x LMS Algorithm

2009-05-19
2009-01-2145
An enhanced, frequency domain filtered-x least mean square (LMS) algorithm is proposed as the basis for an active control system for treating powertrain noise. There are primarily three advantages of this approach: (i) saving of computing time especially for long controller’s filter length; (ii) more accurate estimation of the gradient due to the sample averaging of the whole data block; and (iii) capacity for rapid convergence when the adaptation parameter is correctly adjusted for each frequency bin. Unlike traditional active noise control techniques for suppressing response, the proposed frequency domain FXLMS algorithm is targeted at tuning vehicle interior response in order to achieve a desirable sound quality. The proposed control algorithm is studied numerically by applying the analysis to treat vehicle interior noise represented by either measured or predicted cavity acoustic transfer functions.
X